

N. Stoianov & A. Ivanov
vol. 47, no. 2 (2020): 249-260

https://doi.org/10.11610/isij.4717

Published since 1998 ISSN 0861-5160 (print), ISSN 1314-2119 (online)
Research Article

 Corresponding Author: n.stoianov@di.mod.bg

Public Key Generation Principles
Impact Cybersecurity

Nikolai Stoianov (), Andrey Ivanov

Bulgarian Defence Institute, Sofia, Bulgaria, https://di.mod.bg/en

A B S T R A C T :

Public key cryptography algorithms are based on number theory laws and
principles. For every cryptography system one of the most important issues is
the user’s key which he/she uses to encrypt the messages. That is the reason
the key generation process is always fundamental for data protection and,
since cryptography takes up more space in our daily lives, the public key gen-
eration principles are so important. In this article the authors discuss the Mil-
ler–Rabin primality test in its relation to the key generation process.

A R T I C L E I N F O :

RECEIVED: 22 JUNE 2020

REVISED: 08 SEP 2020

ONLINE: 22 SEP 2020

K E Y W O R D S :

public key cryptography, Miller–Rabin primality
test improvement, cybersecurity

 Creative Commons BY-NC 4.0

Introduction

Nowadays the growing use of online communications over the Internet and the
associated threats to the data we exchange, requires sufficient and reliable pro-
tection of the information exchanged. One of the most reliable and basic
method to make information secure, when two communicating parties don't
know each other, is public key cryptography. Hard-to-solve mathematical prob-
lems are used to realize the mathematical foundations of the existing algo-
rithms using public key cryptography.1, 2 In this mathematics, integer operations
with large numbers are used and are based on modulo calculations of large
prime numbers. Large prime numbers are also used to produce the user’s cryp-
tographic keys (public and private).

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://orcid.org/0000-0002-4953-4172
https://orcid.org/0000-0003-4466-9569
https://creativecommons.org/licenses/by-nc/4.0/legalcode

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

 250

We could state that the security of the exchanged data protected by public
key cryptography is due to two main facts: the difficulty of solving a mathemat-
ical algorithm and the reliability of the generated prime numbers used as keys
in such a system. In this paper we will consider deterministic and probabilistic
primality tests and will focus over the most widely used in practice an algorithm
for testing prime numbers, that of Miller-Rabin 3, 4 and we will propose a new
addition to it, which will increase the reliability of the estimation that this prob-
abilistic algorithm gives.

Public Key Generation and The Importance of The Prime Numbers

Public key cryptography algorithms are based on two main things: difficult to
solve mathematical problems and prime numbers with big values that serve as
user private keys. If that prime numbers are generated not according to the
prescribed rules or are not reliably confirmed as such, the security strength of
protected data could be not enough. In an effort to ensure better protection of
information, new algorithms and rules for generating private keys and the prime
numbers involved in their compilation are created and proposed.5, 6

The more than 85% from certificate authorities (CA) based their root certifi-
cate security by using RSA encryption and signing scheme. Approximately of
10% of CA combinate both RSA and ECDSA cryptographic schemes to protect
their public key infrastructure (PKI). This statement is based on our study in
which we analysed the certificates stored into Windows, Android and Linux op-
erating systems (OS) certificates stores. These operating systems are the most
commonly used worldwide. We can say that a reliable estimate of divisibility of
numbers is essential. Connected with this we will consider algorithms for pri-
mality testing. In practice, they are divided into two main types. Deterministic
and probabilistic algorithms.

Deterministic Primality Testing

The most elementary approach to primality proving is trial division. If attempt
to divide 𝑝 by every integer 𝑛 ≤ ⌊√𝑝⌋ and no such 𝑛 divides 𝑝, then 𝑝 is prime.
But this task will take 𝑂 (√𝑝 𝑀(log 𝑝)) time complexity, which is impractical
for large values of 𝑝. That is why the most practical algorithms have to be used
to deter the big numbers divisibility to factors.

An algorithm created in 2002, AKS (Agrawal, Kayal, and Saxena), falls into the
group of tests that give an unambiguous assessment of divisibility of numbers.
At the heart of AKS algorithm is Fermat's Little Theorem.

The Fermat's Little Theorem states that: if a number 𝑝 is prime, 𝑎 ∈ 𝑍, 𝑝 ∈ 𝑁
and 𝐺𝐶𝐷(𝑎, 𝑝) = 1 then
𝑎𝑝 ≡ 𝑎 𝑚𝑜𝑑 𝑝

The primality test by using this theorem fails for a specific class of numbers,
known as pseudoprimes, which include the Carmichael numbers.

Primarily based on a polynomial generalization of the Fermat’s Little Theo-
rem the AKS algorithm state that: the number 𝑝 is prime if and only

(𝑥 + 𝑎)𝑝 ≡ (𝑥𝑝 + 𝑎) 𝑚𝑜𝑑 𝑝

Public Key Generation Principles Impact Cybersecurity

 251

where 𝑎 ∈ 𝑍, 𝑝 ∈ 𝑁.
The time complexity here would be Ω(𝑛) which is not polynomial time. To

reduce complexity, we can divide both sides by (𝑥𝑟 − 1).7 Therefore, for a cho-
sen 𝑟 the number of computations needed to be performed is less. Hence, the
main objective now is to choose an appropriately small 𝑟 and test if the equa-
tion:

(𝑥 + 𝑎)𝑝 ≡ (𝑥𝑝 + 𝑎) 𝑚𝑜𝑑 𝐺𝐶𝐷(𝑥𝑟 − 1, 𝑝)

is satisfied for sufficient number of 𝑎’s.
The algorithm proposed by Agrawal, Kayal and Saxena 8,9 for primality testing

has following steps:

(1) if 𝑝 = 𝑎𝑏 for 𝑎 ∈ 𝑁, 𝑏 > 1 output COMPOSIT
(2) find smallest 𝑟 such that 𝑂𝑟(𝑝) > 𝑙𝑜𝑔2𝑝
(3) if 1 < 𝐺𝐶𝐷(𝑎, 𝑝) < 𝑝 for some 𝑎 ≤ 𝑟 then output COMPOSIT
(4) if 𝑛 ≤ 𝑟 output PRIME
(5) for each 𝑎 ∈ 1. . ⌊√𝜑(𝑝) log 𝑝⌋
(6) if (𝑥 + 𝑎)𝑝 ≠ (𝑥𝑝 + 𝑎) 𝑚𝑜𝑑 𝐺𝐶𝐷(𝑥𝑟 − 1, 𝑝)
(7) output COMPOSIT
(8) output PRIME

The complexity of execution of that algorithm is �̃�(𝑙𝑜𝑔10.5𝑛) time. Hence

the execution time will be proportional to (log 𝑛)10.5 if 𝑝 grows larger. This is a
polynomial time function, which although not as fast as the probabilistic tests
used nowadays, has the advantage of being fully deterministic.

Probabilistic Testing of Prime Numbers. Miller-Rabin Primality Test

We know two mathematical ways to prove that a number 𝑝 is composite:
a. number 𝑝 factorization, where:

𝑝 = 𝑎. 𝑏 and
𝑎, 𝑏 > 1 (2.2.1)

b. Exhibit a Fermat witness for 𝑝, i.e. find a number 𝑥 satisfying:

𝑥𝑝−1 ≢ 1 𝑚𝑜𝑑 𝑝 (2.2.2)
The speed of these algorithms, which certainly determine whether a number

is divisible, is unsatisfactory. This requires some of the probabilistic algorithms
for primality test to be more widely used.

The Miller-Rabin 10,11 test is based on a third way to prove that a number is
composite.

c. Exhibit a no square root of 1 𝑚𝑜𝑑 𝑝. That means to find a number 𝑥 such
that:

𝑥2 ≡ 1 𝑚𝑜𝑑 𝑝 and
𝑥 ≢ ±1 𝑚𝑜𝑑 𝑝 (2.2.3)

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

 252

The Miller-Rabin test is the most widely used probabilistic primality test. This
algorithm was proposed in 70’s. Miller and Rabin gave two versions of the same
algorithm to test whether a number 𝑝 is prime or not. Rabin’s algorithm works
with a randomly chosen 𝑥 ∈ 𝑍𝑝, and is therefore a randomized one. Correct-
ness of Miller’s algorithm depends on correctness of Extended Riemann Hy-
pothesis. In his test method it is need to tests deterministically for all 𝑥’s, where
1 < 𝑥 < 4. 𝑙𝑜𝑔2𝑝.

If 𝑥 is a witness for an integer 𝑝, then 𝑝 must be composite and we say that
𝑥 witnesses the compositeness of 𝑝. Prime numbers clearly have no witnesses.
If we picked up enough count of 𝑥’s (100 or more depends on size of 𝑝) and no
one is a witness, we can accept that number 𝑝 is probably prime.
The algorithm realization steps are:

(1) Denote 𝑝 − 1 = 𝑠. 2𝑚, where 𝑠 𝑚𝑜𝑑 2 = 1
(2) randomly picked up 𝑥 ∈ 𝑍𝑝
(3) if 𝑥𝑝−1 ≢ 1 𝑚𝑜𝑑 𝑝 output COMPOSITE (𝑝 is definitely composite)

(4) 𝑏 = 𝑥𝑠 𝑚𝑜𝑑 𝑝
(5) if 𝑏 ≡ ±1 𝑚𝑜𝑑 𝑝 , output PRIME (𝑥 is not a witness, 𝑝 could be prime)

(6) Loop i ∈0..m-1
(7) 𝑏 ← 𝑏2 𝑚𝑜𝑑 𝑝
(8) if 𝑏 ≡ −1 𝑚𝑜𝑑 𝑝 then
(9) output PRIME (𝑥 is not a witness, 𝑝 could be prime)

(10) output COMPOSITE 𝑥 is a witness 𝑝, is definitely not prime

The time complexity of that algorithm is �̃�(𝑦. l𝑜𝑔𝑛) where the 𝑦 is the
count of the iterations i.e. the different values of randomly chosen 𝑥.

Subgroup Extending by New Generating Number of a Ring is Gained.

In this part of the paper we will considering primality test based on two criteria
and an idea of a method of transitioning (without intersection) or extending
different multiplicative subgroups formed by their generator integer. To de-
scribe this method of transitioning/extending multiplicative subgroups formed
by number 𝑝, we will use linear Diophantine equation:

𝑑𝑥 . 𝑑𝑦 − 𝑝. 𝑘 = 𝑑𝑧 (2.3.1)

where 𝑑𝑖 = 𝑔𝑖 𝑚𝑜𝑑 𝑝. Every 𝑑𝑖 ∈ 𝑍𝑝 and it is part of a ring generated by num-
ber 𝑔 and has ring order #𝑂(𝑔,𝑝) or smaller. In the particular case when
𝑑𝑥 = 𝑑𝑦

−1 𝑚𝑜𝑑 𝑝, value of 𝑑𝑧 = 1.
In our practice dealing with number rings we saw that if 𝑑𝑧 = 1 quadratic reci-

procity (
𝑑𝑥

𝑝
) = (

𝑑𝑦

𝑝
), and when size of #𝑂(𝑔,𝑝) < 𝑝 − 1 then number 𝑘 could

highly has different quadratic reciprocity, i.e. (
𝑑𝑥

𝑝
) ≠ (

𝑘

𝑝
). In cases when that is

not true, we can just do that with new value of 𝑑𝑥 ← 𝑘 and in few steps of re-
peating that we can reach a value of 𝑘 which has different quadratic reciprocity

Public Key Generation Principles Impact Cybersecurity

 253

to 𝑝 than the initial 𝑑𝑥. We saw more important thing, that the rings formed
with generators 𝑑𝑥 and 𝑘, have very often different elements on its sets. If we
use 𝑞 = 𝑑𝑥 . 𝑘 𝑚𝑜𝑑 𝑝 as a ring generator its #𝑂(𝑞,𝑝) is different then #𝑂(𝑑𝑥,𝑝)

and #𝑂(𝑘,𝑝). To show that we will use two examples. Into the first we will use a

prime number with value 1117 and in the second one composite number
21421 = 11 . 1931 .

Example 1

 𝑝 = 1117 , 𝑔 = 430 , #𝑂(𝑝,𝑝) = 372 , (
430

1117
) = −1

1 430 59 688 117 654 175 823 233 870 291 275 349 440

2 595 60 952 118 853 176 918 234 1022 292 965 350 427

3 57 61 538 119 414 177 439 235 479 293 543 351 422

4 1053 62 121 120 417 178 1114 236 442 294 37 352 506

5 405 63 648 121 590 179 944 237 170 295 272 353 882

6 1015 64 507 122 141 180 449 238 495 296 792 354 597

7 820 65 195 123 312 181 946 239 620 297 992 355 917

8 745 66 75 124 120 182 192 240 754 298 983 356 9

9 888 67 974 125 218 183 1019 241 290 299 464 357 519

10 943 68 1062 126 1029 184 306 242 713 300 694 358 887

11 19 69 924 127 138 185 891 243 532 301 181 359 513

12 351 70 785 128 139 186 1116 244 892 302 757 360 541

13 135 71 216 129 569 187 687 245 429 303 463 361 294

14 1083 72 169 130 47 188 522 246 165 304 264 362 199

15 1018 73 65 131 104 189 1060 247 579 305 703 363 678

16 993 74 25 132 40 190 64 248 996 306 700 364 3

17 296 75 697 133 445 191 712 249 469 307 527 365 173

18 1059 76 354 134 343 192 102 250 610 308 976 366 668

19 751 77 308 135 46 193 297 251 922 309 805 367 171

20 117 78 634 136 791 194 372 252 1042 310 997 368 925

21 45 79 72 137 562 195 229 253 143 311 899 369 98

22 361 80 801 138 388 196 174 254 55 312 88 370 811

23 1084 81 394 139 407 197 1098 255 193 313 979 371 226

24 331 82 753 140 758 198 766 256 332 314 978 372 1

25 471 83 977 141 893 199 982 257 901 315 548 373 430

26 353 84 118 142 859 200 34 258 948 316 1070 374 595

27 995 85 475 143 760 201 99 259 1052 317 1013 375 57

28 39 86 956 144 636 202 124 260 1092 318 1077 376 1053

29 15 87 24 145 932 203 821 261 420 319 672 377 405

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

 254

30 865 88 267 146 874 204 58 262 763 320 774 378 1015

31 1106 89 876 147 508 205 366 263 809 321 1071 379 820

32 855 90 251 148 625 206 1000 264 483 322 326 380 745

33 157 91 698 149 670 207 1072 265 1045 323 555 381 888

34 490 92 784 150 1031 208 756 266 316 324 729 382 943

35 704 93 903 151 998 209 33 267 723 325 710 383 19

36 13 94 691 152 212 210 786 268 364 326 359 384 351

37 5 95 8 153 683 211 646 269 140 327 224 385 135

38 1033 96 89 154 1036 212 764 270 999 328 258 386 1083

39 741 97 292 155 914 213 122 271 642 329 357 387 1018

40 285 98 456 156 953 214 1078 272 161 330 481 388 993

41 797 99 605 157 968 215 1102 273 1093 331 185 389 296

42 908 100 1006 158 716 216 252 274 850 332 243 390 1059

43 607 101 301 159 705 217 11 275 241 333 609 391 751

44 749 102 975 160 443 218 262 276 866 334 492 392 117

45 374 103 375 161 600 219 960 277 419 335 447 393 45

46 1089 104 402 162 1090 220 627 278 333 336 86 394 361

47 247 105 842 163 677 221 413 279 214 337 119 395 1084

48 95 106 152 164 690 222 1104 280 426 338 905 396 331

49 638 107 574 165 695 223 1112 281 1109 339 434 397 471

50 675 108 1080 166 611 224 84 282 1028 340 81 398 353

51 947 109 845 167 235 225 376 283 825 341 203 399 995

52 622 110 325 168 520 226 832 284 661 342 164 400 39

53 497 111 125 169 200 227 320 285 512 343 149 401 15

54 363 112 134 170 1108 228 209 286 111 344 401 402 865

55 827 113 653 171 598 229 510 287 816 345 412 403 1106

56 404 114 423 172 230 230 368 288 142 346 674 404 855

57 585 115 936 173 604 231 743 289 742 347 517 405 157

58 225 116 360 174 576 232 28 290 715 348 27 406 490

If we use 𝑥 = 2 , 𝑑𝑥 = 595 , (
595

1117
) = 1, 𝑑𝑦 = 595−1 𝑚𝑜𝑑 1117 = 811 and

calculate: 𝑘 =
𝑑𝑥 . 𝑑𝑦 − 1

𝑝
=

595 . 811 − 1

1117
= 432. The generated ring will be:

1 432 59 281 117 1080 175 144 233 466 291 360 349 48

2 85 60 756 118 771 176 773 234 252 292 257 350 630

3 976 61 428 119 206 177 1070 235 515 293 441 351 729

4 523 62 591 120 749 178 919 236 197 294 622 352 1051

5 302 63 636 121 755 179 473 237 212 295 624 353 530

Public Key Generation Principles Impact Cybersecurity

 255

6 892 64 1087 122 1113 180 1042 238 1107 296 371 354 1092

7 1096 65 444 123 506 181 1110 239 148 297 541 355 370

8 981 66 801 124 777 182 327 240 267 298 259 356 109

9 449 67 879 125 564 183 522 241 293 299 188 357 174

10 727 68 1065 126 142 184 987 242 355 300 792 358 329

11 187 69 993 127 1026 185 807 243 331 301 342 359 269

12 360 70 48 128 900 186 120 244 16 302 300 360 40

13 257 71 630 129 84 187 458 245 210 303 28 361 525

14 441 72 729 130 544 188 147 246 243 304 926 362 49

15 622 73 1051 131 438 189 952 247 1095 305 146 363 1062

16 624 74 530 132 443 190 208 248 549 306 520 364 814

17 371 75 1092 133 369 191 496 249 364 307 123 365 910

18 541 76 370 134 794 192 925 250 868 308 637 366 1053

19 259 77 109 135 89 193 831 251 781 309 402 367 277

20 188 78 174 136 470 194 435 252 58 310 529 368 145

21 792 79 329 137 863 195 264 253 482 311 660 369 88

22 342 80 269 138 855 196 114 254 462 312 285 370 38

23 300 81 40 139 750 197 100 255 758 313 250 371 778

24 28 82 525 140 70 198 754 256 175 314 768 372 996

25 926 83 49 141 81 199 681 257 761 315 27 373 227

26 146 84 1062 142 365 200 421 258 354 316 494 374 885

27 520 85 814 143 183 201 918 259 1016 317 61 375 306

28 123 86 910 144 866 202 41 260 1048 318 661 376 386

29 637 87 1053 145 1034 203 957 261 351 319 717 377 319

30 402 88 277 146 1005 204 134 262 837 320 335 378 417

31 529 89 145 147 764 205 921 263 793 321 627 379 307

32 660 90 88 148 533 206 220 264 774 322 550 380 818

33 285 91 38 149 154 207 95 265 385 323 796 381 404

34 250 92 778 150 625 208 828 266 1004 324 953 382 276

35 768 93 996 151 803 209 256 267 332 325 640 383 830

36 27 94 227 152 626 210 9 268 448 326 581 384 3

37 494 95 885 153 118 211 537 269 295 327 784 385 179

38 61 96 306 154 711 212 765 270 102 328 237 386 255

39 661 97 386 155 1094 213 965 271 501 329 737 387 694

40 717 98 319 156 117 214 239 272 851 330 39 388 452

41 335 99 417 157 279 215 484 273 139 331 93 389 906

42 627 100 307 158 1009 216 209 274 847 332 1081 390 442

43 550 101 818 159 258 217 928 275 645 333 86 391 1054

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

 256

44 796 102 404 160 873 218 1010 276 507 334 291 392 709

45 953 103 276 161 707 219 690 277 92 335 608 393 230

46 640 104 830 162 483 220 958 278 649 336 161 394 1064

47 581 105 3 163 894 221 566 279 1 337 298 395 561

48 784 106 179 164 843 222 1006 280 432 338 281 396 1080

49 237 107 255 165 34 223 79 281 85 339 756 397 771

50 737 108 694 166 167 224 618 282 976 340 428 398 206

51 39 109 452 167 656 225 13 283 523 341 591 399 749

52 93 110 906 168 791 226 31 284 302 342 636 400 755

53 1081 111 442 169 1027 227 1105 285 892 343 1087 401 1113

54 86 112 1054 170 215 228 401 286 1096 344 444 402 506

55 291 113 709 171 169 229 97 287 981 345 801 403 777

56 608 114 230 172 403 230 575 288 449 346 879 404 564

57 161 115 1064 173 961 231 426 289 727 347 1065 405 142

58 298 116 561 174 745 232 844 290 187 348 993 406 1026

It is easy to see that two rings have no common elements among their
groups. But if we calculate 𝑞 = 𝑑𝑥 . 𝑘 𝑚𝑜𝑑 𝑝 = 430 . 432 𝑚𝑜𝑑 1117 = 338
and construct a ring with generator 𝑞, that ring will has order #𝑂(𝑞,𝑝) = 1116 =
𝑝 − 1.
 To demonstrate that this works when the number 𝑝 is composite we make
an example with 𝑝 = 21421.

Example 2

 𝑝 = 21421 , 𝑔 = 430 , #𝑂(𝑝,𝑝) = 690 , (
430

21421
) = 1

Use 𝑥 = 1 , 𝑑𝑥 = 430 , 𝑑𝑦 = 430−1 𝑚𝑜𝑑 21421 = 2441

calculate: 𝑘 =
𝑑𝑥 . 𝑑𝑦 − 1

𝑝
=

430 . 2441 − 1

21421
= 49.

If you try to make tables as this above and use this two generator numbers
(430 and 49) you will see that they have no common elements too. More over
if you calculate 𝑞 = 𝑑𝑥 . 𝑘 𝑚𝑜𝑑 𝑝 = 430 . 49 𝑚𝑜𝑑 21421 = 21070 you will be
convinced that ring with generator 𝑞 will not have intersection elements neither
with ring 𝑅𝑔 nor with ring 𝑅𝑘.

That is our idea to use a start generate number 𝑔 and next use several con-
science values of 𝑘 in two primality test criteria and not to be used randomly
generated values. This can lead to make the test more deterministic due to
more subgroups could be tested and pass the criteria.

The criteria of the test which we will use are:

(1) If 𝑝 is a prime, then Jacobi's symbol is equal to Legendre's symbol.12

(2) The Miller-Rabin test base: To find a number 𝑥 such that:

𝑥2 ≡ 1 𝑚𝑜𝑑 𝑝 and 𝑥 ≢ ±1 𝑚𝑜𝑑 𝑝

Public Key Generation Principles Impact Cybersecurity

 257

We will describe the algorithm steps which we propose. To do that we will
first point out the steps of 3 basic functions which we use into it:

function modK (in generator, in modulonumber)

a = (generator ^ -1) mod modulonumber
return ((a * generator) – 1) div modulonumber

function getNotPRU (in generator, in modulonumber)

g = generator
kJacobi = JacobiSimbol(g,m)
if (kJacobi = -1)
 g = (g * g) mod modulonumber
i = 0
m = g
DO
 i++
 m = modulonumber – m
 m = modK(m, modulonumber)
 if (m<2)
 m = modulonumber div 3
 i = 0
 kJacobi = JacobiSimbol(m,modulonumber)
 if (kJacobi=0)
 return m
WHILE (kJacobi=1) or (i>33)
return m

function TryToGetPRU (in generator, in modulonumber)

 g = generator
 kJacobi = JacobiSimbol(g,m)
 if (kJacobi = -1)
 g = (g * g) mod modulonumber
 e = modulonumber mod 5
 if (e in [2,3])
 return = (5*g) mod modulonumber
 e = modulonumber mod 6
 if (e = 5)

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

 258

 return = (-3*g) mod modulonumber
 e = modulonumber mod 8
 if (e in [3,5])
 return = (2*g) mod modulonumber
 if (e = 7)
 return = (-2*g) mod modulonumber
 i = 0
 m = g
 DO
 i++
 m = modulonumber – m
 m = modK(m, modulonumber)
 if (m<2)
 m = modulonumber div 3
 i = 0
 kJacobi = JacobiSimbol(m,modulonumber)
 if (kJacobi=0)
 return m
 WHILE (kJacobi=-1) or (i>33)
 if ((m*g) mod modulonumber = 1)
 return m
 return (m*g) mod modulonumber

The steps of the algorithm which we propose to be estimated primality of a
number are:

(1) Pick up small prime number 𝑞 such that 𝑎 = 𝑝 𝑚𝑜𝑑 𝑞 > 1

(2) 𝑏 = 𝑎𝑝−1 𝑚𝑜𝑑 𝑝

(3) if 𝑏 > 1

(4) output COMPOSITE

(5) 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = 1

(6) 𝑓 = (𝑝 − 1)

(7) 𝑙𝑜𝑜𝑝 𝑖 ∈ 0. .4

 (7.1) 𝑏 = 𝑓 ⁄ 2

 (7.2) 𝑖𝑓 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = 1

 (7.3) 𝑔 = 𝑇𝑟𝑦𝑇𝑜𝐺𝑒𝑡𝑃𝑅𝑈 (𝑎, 𝑝)

 (7.4) 𝑖𝑓 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = −1

 (7.5) 𝑔 = 𝑔𝑒𝑡𝑁𝑜𝑡𝑃𝑅𝑈 (𝑎, 𝑝)

Public Key Generation Principles Impact Cybersecurity

 259

 (7.6) 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 ← (
𝑔

𝑝
)

 (7.7) 𝑖𝑓 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = 0

 (7.8) output COMPOSITE

 (7.9) 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 ← 𝑔𝑏 𝑚𝑜𝑑 𝑝

 (7.10) 𝑖𝑓 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 <> 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙

 (7.11) output COMPOSITE

 (7.12) 𝑤ℎ𝑖𝑙𝑒 (𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 = 1) 𝑎𝑛𝑑 (𝑏 𝑚𝑜𝑑 2 = 0)

 (7.12.1) 𝑏 ← 𝑏 ⁄ 2

 (7.12.2) 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 ← 𝑔𝑏 𝑚𝑜𝑑 𝑝

 (7.12.3) 𝑖𝑓 (𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 > 1) 𝑎𝑛𝑑 (𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 < 𝑓)

 (7.12.4) output COMPOSITE

 (7.13) 𝑎 ← [𝑔 ∗ 𝑚𝑜𝑑𝑓𝐾(𝑔, 𝑝)] 𝑚𝑜𝑑 𝑝

 (7.14) 𝑖𝑓 𝑎 = 1 𝑡ℎ𝑒𝑛

 (7.15) 𝑎 ← 𝑔

(8) output PRIME

The proposed algorithm was used to test first 50th millions of prime numbers
and test passed successfully. We made some test with several hundreds of big
numbers with size of 200, 300 and 400 decimal digits and primality test estima-
tion was correct.

For comparison between new proposal method which can be used as exten-
sion of Miller-Rabin primality test and AKS, we can say that AKS is deterministic
primality test algorithm and new addition of Millar-Rabin algorithm stays prob-
abilistic one but highly increases possibility of correct estimation to check pri-
mality of a number with only 5 main iterations, whatever the size of tested num-
ber is. The power of that new approach is in that different sets of number rings
without elements intersections between them are used in primality check pro-
cess. From other comparison point of view, we can say that AKS algorithm in
general operates with polynomial mathematical operations that is way Millar-
Rabin algorithm is faster and remains most commonly used in worldwide public
key cryptographic systems. That is why we directed our efforts to gain a way to
increase the probability of the correct result of Miller-Rabin primality test algo-
rithm.

Conclusions

Into suggested method of switching between different subgroups there is no
need to use randomly chosen values of integers which have to be used to pass
the test criteria. Smaller number of test integers are need to execute the test.

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

 260

If the suggested method in this paper could be improved it is highly possible
that the Miller-Rabin primality test could be gained to deterministic one with
low complexity.

References

1 William Stallings, Cryptography and Network Security: Principles and Practice, 5th.
ed. (Prentice Hall Press, 2010).

2 Ann Murphy and David Murphy, "The Role of Cryptography in Security for Electronic
Commerce," The ITB Journal 2, no. 1, (2001): 21-50.

3 Moses Liskov, “Miller–Rabin Probabilistic Primality Test,” In: van Tilborg H.C.A. (eds.)
Encyclopedia of Cryptography and Security (Boston, MA: Springer, 2005).

4 Keith Conrad, “Miller-Rabin Test,” Encyclopedia of Cryptography and Security (Bos-
ton, MA: Springer, 2011).

5 Fanyu Kong, Jia Yu, and Lei Wu, “Security Analysis of an RSA Key Generation Algorithm
with a Large Private Key,” In Proceedings of the 14th international conference on Infor-
mation security (ISC’11) (Berlin, Heidelberg, Springer-Verlag, 2011), 95–101.

6 Luis Hernandez Encinas, Jaime Masqué, and Araceli Queiruga-Dios, “An Algorithm to
Obtain an RSA Modulus with a Large Private Key,” IACR Cryptology ePrint Archive,
2003, p. 45.

7 Vijay Menon, “Deterministic Primality Testing – Understanding the AKS Algorithm,”
2013.

8 Robert G. Salembier and Paul Southerington, “An Implementation of the AKS Primal-
ity Test,” IEEE, May 12, 2005.

9 Martin Dietzfelbinger, Primality Testing in Polynomial Time: From Randomized Algo-
rithms to “Primes Is in P,” Lecture Notes in Computer Science, (SpringerVerlag, 2004).

10 Bulat Mubarakov and Ramilya Rubtsova, “On the Number of Witnesses in the Miller–
Rabin Primality Test,” Symmetry 12, no. 6 (2020): 890, https://doi.org/10.3390/
sym12060890.

11 Keith Conrad, “The Miller–Rabin Test,” 2011, http://www.math.uconn.edu/~kcon-
rad/blurbs/ugradnumthy/millerrabin.pdf.

12 W. Sierpiński, “Chapter IX Legendre's Symbol and Jacobi's Symbol,” North-Holland
Mathematical Library 31 (1988): 340-359.

About the Authors

Associate Professor Nikolay Stoyanov, PhD, is Deputy Director of the Bulgarian
Defence Institute “Professor Tsvetan Lazarov.” In 2003 he acquired a doctoral
degree in the Advanced Defence Research Institute, “G. S. Rakovski” National
Defence College. In 2020 he graduated the “G. S. Rakovski” National Defence
College with specialty “Strategic Management of Defence and the Armed
Forces.” https://orcid.org/0000-0002-4953-4172

Andrey Ivanov is an engineer. In 2000, he graduated the Higher Military Artillery
School “P. Volov” – Shumen with a degree in automated management systems.
https://orcid.org/0000-0003-4466-9569

http://www.math.uconn.edu/~kconrad/blurbs/
http://www.math.uconn.edu/~kconrad/blurbs/

	Introduction
	Public Key Generation and The Importance of The Prime Numbers
	Example 1
	Example 2

	Conclusions
	References

