

N. Stoianov & A. Ivanov vol. 47, no. 2 (2020): 249-260 https://doi.org/10.11610/isij.4717

Published since 1998

ISSN 0861-5160 (print), ISSN 1314-2119 (online)

Research Article

Public Key Generation Principles Impact Cybersecurity

Nikolai Stoianov 💿 (🖂), Andrey Ivanov 💿

Bulgarian Defence Institute, Sofia, Bulgaria, https://di.mod.bg/en

ABSTRACT:

Public key cryptography algorithms are based on number theory laws and principles. For every cryptography system one of the most important issues is the user's key which he/she uses to encrypt the messages. That is the reason the key generation process is always fundamental for data protection and, since cryptography takes up more space in our daily lives, the public key generation principles are so important. In this article the authors discuss the Miller–Rabin primality test in its relation to the key generation process.

ARTICLE INFO: KEYWORDS:

REVISED: 08 SEP 2020
ONLINE: 22 SEP 2020

RECEIVED: 22 JUNE 2020 public key cryptography, Miller–Rabin primality

test improvement, cybersecurity

Creative Commons BY-NC 4.0

Introduction

Nowadays the growing use of online communications over the Internet and the associated threats to the data we exchange, requires sufficient and reliable protection of the information exchanged. One of the most reliable and basic method to make information secure, when two communicating parties don't know each other, is public key cryptography. Hard-to-solve mathematical problems are used to realize the mathematical foundations of the existing algorithms using public key cryptography.^{1, 2} In this mathematics, integer operations with large numbers are used and are based on modulo calculations of large prime numbers. Large prime numbers are also used to produce the user's cryptographic keys (public and private).

We could state that the security of the exchanged data protected by public key cryptography is due to two main facts: the difficulty of solving a mathematical algorithm and the reliability of the generated prime numbers used as keys in such a system. In this paper we will consider deterministic and probabilistic primality tests and will focus over the most widely used in practice an algorithm for testing prime numbers, that of Miller-Rabin^{3, 4} and we will propose a new addition to it, which will increase the reliability of the estimation that this probabilistic algorithm gives.

Public Key Generation and The Importance of The Prime Numbers

Public key cryptography algorithms are based on two main things: difficult to solve mathematical problems and prime numbers with big values that serve as user private keys. If that prime numbers are generated not according to the prescribed rules or are not reliably confirmed as such, the security strength of protected data could be not enough. In an effort to ensure better protection of information, new algorithms and rules for generating private keys and the prime numbers involved in their compilation are created and proposed.^{5, 6}

The more than 85% from certificate authorities (CA) based their root certificate security by using RSA encryption and signing scheme. Approximately of 10% of CA combinate both RSA and ECDSA cryptographic schemes to protect their public key infrastructure (PKI). This statement is based on our study in which we analysed the certificates stored into Windows, Android and Linux operating systems (OS) certificates stores. These operating systems are the most commonly used worldwide. We can say that a reliable estimate of divisibility of numbers is essential. Connected with this we will consider algorithms for primality testing. In practice, they are divided into two main types. Deterministic and probabilistic algorithms.

Deterministic Primality Testing

The most elementary approach to primality proving is trial division. If attempt to divide p by every integer $n \leq \lfloor \sqrt{p} \rfloor$ and no such n divides p, then p is prime. But this task will take $O\left(\sqrt{p}\,M(\log p)\right)$ time complexity, which is impractical for large values of p. That is why the most practical algorithms have to be used to deter the big numbers divisibility to factors.

An algorithm created in 2002, AKS (Agrawal, Kayal, and Saxena), falls into the group of tests that give an unambiguous assessment of divisibility of numbers. At the heart of AKS algorithm is Fermat's Little Theorem.

The Fermat's Little Theorem states that: if a number p is prime, $a \in Z$, $p \in N$ and GCD(a,p)=1 then $a^p \equiv a \bmod p$

The primality test by using this theorem fails for a specific class of numbers, known as pseudoprimes, which include the Carmichael numbers.

Primarily based on a polynomial generalization of the Fermat's Little Theorem the AKS algorithm state that: the number p is prime if and only

$$(x+a)^p \equiv (x^p+a) \bmod p$$

where $a \in Z$, $p \in N$.

The time complexity here would be $\Omega(n)$ which is not polynomial time. To reduce complexity, we can divide both sides by $(x^r - 1)$. Therefore, for a chosen r the number of computations needed to be performed is less. Hence, the main objective now is to choose an appropriately small r and test if the equation:

$$(x + a)^p \equiv (x^p + a) \bmod GCD(x^r - 1, p)$$

is satisfied for sufficient number of a's.

The algorithm proposed by Agrawal, Kayal and Saxena 8,9 for primality testing has following steps:

- (1) if $p = a^b$ for $a \in N$, b > 1 output **COMPOSIT** find smallest r such that $O_r(p) > log^2 p$ (2) if 1 < GCD(a, p) < p for some $a \le r$ then output **COMPOSIT** (3) (4) if n < r output **PRIME** (5) for each $a \in 1$. $|\sqrt{\varphi(p)} \log p|$
- (6) if $(x + a)^p \neq (x^p + a) \mod GCD(x^r - 1, p)$
- output COMPOSIT (7)
- (8) output PRIME

The complexity of execution of that algorithm is $\tilde{O}(log^{10.5}n)$ time. Hence the execution time will be proportional to $(\log n)^{10.5}$ if p grows larger. This is a polynomial time function, which although not as fast as the probabilistic tests used nowadays, has the advantage of being fully deterministic.

Probabilistic Testing of Prime Numbers. Miller-Rabin Primality Test

We know two mathematical ways to prove that a number p is composite:

a. number p factorization, where:

$$p = a. b$$
 and $a, b > 1$ (2.2.1)

b. Exhibit a Fermat witness for p, i.e. find a number x satisfying:

$$x^{p-1} \not\equiv 1 \bmod p \tag{2.2.2}$$

The speed of these algorithms, which certainly determine whether a number is divisible, is unsatisfactory. This requires some of the probabilistic algorithms for primality test to be more widely used.

The Miller-Rabin ^{10,11} test is based on a third way to prove that a number is composite.

Exhibit a no square root of $1 \mod p$. That means to find a number x such that:

$$x^2 \equiv 1 \mod p$$
 and $x \not\equiv \pm 1 \mod p$ (2.2.3)

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

The Miller-Rabin test is the most widely used probabilistic primality test. This algorithm was proposed in 70's. Miller and Rabin gave two versions of the same algorithm to test whether a number p is prime or not. Rabin's algorithm works with a randomly chosen $x \in Z_p$, and is therefore a randomized one. Correctness of Miller's algorithm depends on correctness of Extended Riemann Hypothesis. In his test method it is need to tests deterministically for all x's, where $1 < x < 4 \cdot log^2 p$.

If x is a witness for an integer p, then p must be composite and we say that x witnesses the compositeness of p. Prime numbers clearly have no witnesses. If we picked up enough count of x's (100 or more depends on size of p) and no one is a witness, we can accept that number p is probably prime.

The algorithm realization steps are:

```
Denote p-1 = s. 2^m, where s \mod 2 = 1
(1)
       randomly picked up x \in \mathbb{Z}_n
(2)
       if x^{p-1} \not\equiv 1 \bmod p output COMPOSITE
(3)
                                                            (p is definitely composite)
       b = x^s \mod p
(4)
(5)
       if b \equiv \pm 1 \mod p, output PRIME
                                                            (x is not a witness, p could be prime)
       Loop i €0..m-1
(6)
           b \leftarrow b^2 \mod p
(7)
           if b \equiv -1 \mod p then
(8)
(9)
                output PRIME
                                                            (x is not a witness, p could be prime)
(10)
       output COMPOSITE
                                                            x is a witness p, is definitely not prime
```

The time complexity of that algorithm is $\tilde{O}(y.\log n)$ where the y is the count of the iterations i.e. the different values of randomly chosen x.

Subgroup Extending by New Generating Number of a Ring is Gained.

In this part of the paper we will considering primality test based on two criteria and an idea of a method of transitioning (without intersection) or extending different multiplicative subgroups formed by their generator integer. To describe this method of transitioning/extending multiplicative subgroups formed by number p, we will use linear Diophantine equation:

$$d_x . d_y - p. k = d_z (2.3.1)$$

where $d_i=g^i \ mod \ p$. Every $d_i \in Z_p$ and it is part of a ring generated by number g and has ring order $\#O_{(g,p)}$ or smaller. In the particular case when $d_x=d_y^{-1} \ mod \ p$, value of $d_z=1$.

In our practice dealing with number rings we saw that if $d_z=1$ quadratic reciprocity $\left(\frac{d_x}{p}\right)=\left(\frac{d_y}{p}\right)$, and when size of $\#O_{(g,p)}< p-1$ then number k could

highly has different quadratic reciprocity, i.e. $\left(\frac{d_x}{p}\right) \neq \left(\frac{k}{p}\right)$. In cases when that is not true, we can just do that with new value of $d_x \leftarrow k$ and in few steps of repeating that we can reach a value of k which has different quadratic reciprocity

to p than the initial d_x . We saw more important thing, that the rings formed with generators d_x and k, have very often different elements on its sets. If we use $q=d_x.k\ mod\ p$ as a ring generator its $\#O_{(q,p)}$ is different then $\#O_{(d_x,p)}$ and $\#O_{(k,p)}$. To show that we will use two examples. Into the first we will use a prime number with value 1117 and in the second one composite number 21421=11.1931.

Example 1

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

30	865	88	267	146	874	204	58	262	763	320	774	270	1015
												378	
31	1106	89	876	147	508	205	366	263	809	321	1071	379	820
32	855	90	251	148	625	206	1000	264	483	322	326	380	745
33	157	91	698	149	670	207	1072	265	1045	323	555	381	888
34	490	92	784	150	1031	208	756	266	316	324	729	382	943
35	704	93	903	151	998	209	33	267	723	325	710	383	19
36	13	94	691	152	212	210	786	268	364	326	359	384	351
37	5	95	8	153	683	211	646	269	140	327	224	385	135
38	1033	96	89	154	1036	212	764	270	999	328	258	386	1083
39	741	97	292	155	914	213	122	271	642	329	357	387	1018
40	285	98	456	156	953	214	1078	272	161	330	481	388	993
41	797	99	605	157	968	215	1102	273	1093	331	185	389	296
42	908	100	1006	158	716	216	252	274	850	332	243	390	1059
43	607	101	301	159	705	217	11	275	241	333	609	391	751
44	749	102	975	160	443	218	262	276	866	334	492	392	117
45	374	103	375	161	600	219	960	277	419	335	447	393	45
46	1089	104	402	162	1090	220	627	278	333	336	86	394	361
47	247	105	842	163	677	221	413	279	214	337	119	395	1084
48	95	106	152	164	690	222	1104	280	426	338	905	396	331
49	638	107	574	165	695	223	1112	281	1109	339	434	397	471
50	675	108	1080	166	611	224	84	282	1028	340	81	398	353
51	947	109	845	167	235	225	376	283	825	341	203	399	995
52	622	110	325	168	520	226	832	284	661	342	164	400	39
53	497	111	125	169	200	227	320	285	512	343	149	401	15
54	363	112	134	170	1108	228	209	286	111	344	401	402	865
55	827	113	653	171	598	229	510	287	816	345	412	403	1106
56	404	114	423	172	230	230	368	288	142	346	674	404	855
57	585	115	936	173	604	231	743	289	742	347	517	405	157
58	225	116	360	174	576	232	28	290	715	348	27	406	490
•				•		595 \		•		•		•	•

If we use x=2, $d_x=595$, $\left(\frac{595}{1117}\right)=1$, $d_y=595^{-1}$ $mod\ 1117=811$ and calculate: $k=\frac{d_x\cdot d_y-1}{p}=\frac{595\cdot 811-1}{1117}=432$. The generated ring will be:

	1	432	59	281	117	1080	175	144	233	466	291	360	349	48
	2	85	60	756	118	771	176	773	234	252	292	257	350	630
	3	976	61	428	119	206	177	1070	235	515	293	441	351	729
	4	523	62	591	120	749	178	919	236	197	294	622	352	1051
	5	302	63	636	121	755	179	473	237	212	295	624	353	530
- 1					l		l		l				l	

6	892	64	1087	122	1113	180	1042	238	1107	296	371	354	1092
7	1096	65	444	123	506	181	1110	239	148	297	541	355	370
8	981	66	801	124	777	182	327	240	267	298	259	356	109
9	449	67	879	125	564	183	522	241	293	299	188	357	174
10	727	68	1065	126	142	184	987	242	355	300	792	358	329
11	187	69	993	127	1026	185	807	243	331	301	342	359	269
12	360	70	48	128	900	186	120	244	16	302	300	360	40
13	257	71	630	129	84	187	458	245	210	303	28	361	525
14	441	72	729	130	544	188	147	246	243	304	926	362	49
15	622	73	1051	131	438	189	952	247	1095	305	146	363	1062
16	624	74	530	132	443	190	208	248	549	306	520	364	814
17	371	75	1092	133	369	191	496	249	364	307	123	365	910
18	541	76	370	134	794	192	925	250	868	308	637	366	1053
19	259	77	109	135	89	193	831	251	781	309	402	367	277
20	188	78	174	136	470	194	435	252	58	310	529	368	145
21	792	79	329	137	863	195	264	253	482	311	660	369	88
22	342	80	269	138	855	196	114	254	462	312	285	370	38
23	300	81	40	139	750	197	100	255	758	313	250	371	778
24	28	82	525	140	70	198	754	256	175	314	768	372	996
25	926	83	49	141	81	199	681	257	761	315	27	373	227
26	146	84	1062	142	365	200	421	258	354	316	494	374	885
27	520	85	814	143	183	201	918	259	1016	317	61	375	306
28	123	86	910	144	866	202	41	260	1048	318	661	376	386
29	637	87	1053	145	1034	203	957	261	351	319	717	377	319
30	402	88	277	146	1005	204	134	262	837	320	335	378	417
31	529	89	145	147	764	205	921	263	793	321	627	379	307
32	660	90	88	148	533	206	220	264	774	322	550	380	818
33	285	91	38	149	154	207	95	265	385	323	796	381	404
34	250	92	778	150	625	208	828	266	1004	324	953	382	276
35	768	93	996	151	803	209	256	267	332	325	640	383	830
36	27	94	227	152	626	210	9	268	448	326	581	384	3
37	494	95	885	153	118	211	537	269	295	327	784	385	179
38	61	96	306	154	711	212	765	270	102	328	237	386	255
39	661	97	386	155	1094	213	965	271	501	329	737	387	694
40	717	98	319	156	117	214	239	272	851	330	39	388	452
41	335	99	417	157	279	215	484	273	139	331	93	389	906
42	627	100	307	158	1009	216	209	274	847	332	1081	390	442
43	550	101	818	159	258	217	928	275	645	333	86	391	1054

44	796	102	404	160	873	218	1010	276	507	334	291	392	709
45	953	103	276	161	707	219	690	277	92	335	608	393	230
46	640	104	830	162	483	220	958	278	649	336	161	394	1064
47	581	105	3	163	894	221	566	279	1	337	298	395	561
48	784	106	179	164	843	222	1006	280	432	338	281	396	1080
49	237	107	255	165	34	223	79	281	85	339	756	397	771
50	737	108	694	166	167	224	618	282	976	340	428	398	206
51	39	109	452	167	656	225	13	283	523	341	591	399	749
52	93	110	906	168	791	226	31	284	302	342	636	400	755
53	1081	111	442	169	1027	227	1105	285	892	343	1087	401	1113
54	86	112	1054	170	215	228	401	286	1096	344	444	402	506
55	291	113	709	171	169	229	97	287	981	345	801	403	777
56	608	114	230	172	403	230	575	288	449	346	879	404	564
57	161	115	1064	173	961	231	426	289	727	347	1065	405	142
58	298	116	561	174	745	232	844	290	187	348	993	406	1026
1		I		I		ı		I		I		I	

It is easy to see that two rings have no common elements among their groups. But if we calculate $q=d_x.k\ mod\ p=430.432\ mod\ 1117=338$ and construct a ring with generator q, that ring will has order $\#O_{(q,p)}=1116=p-1$.

To demonstrate that this works when the number p is composite we make an example with p=21421.

Example 2

$$p = 21421 \ , \ g = 430 \ , \# O_{(p,p)} = 690 \ , \ \left(\frac{430}{21421}\right) = 1$$
 Use $x = 1$, $d_x = 430$, $d_y = 430^{-1} \ mod \ 21421 = 2441$ calculate: $k = \frac{d_x \ . \ d_y - 1}{p} = \frac{430 \ . \ 2441 - 1}{21421} = 49.$

If you try to make tables as this above and use this two generator numbers (430 and 49) you will see that they have no common elements too. More over if you calculate $q=d_x$. $k \ mod \ p=430$. $49 \ mod \ 21421=21070$ you will be convinced that ring with generator q will not have intersection elements neither with ring R_g nor with ring R_k .

That is our idea to use a start generate number g and next use several conscience values of k in two primality test criteria and not to be used randomly generated values. This can lead to make the test more deterministic due to more subgroups could be tested and pass the criteria.

The criteria of the test which we will use are:

- (1) If p is a prime, then Jacobi's symbol is equal to Legendre's symbol. 12
- (2) The Miller-Rabin test base: To find a number x such that:

$$x^2 \equiv 1 \mod p$$
 and $x \not\equiv \pm 1 \mod p$

We will describe the algorithm steps which we propose. To do that we will first point out the steps of 3 basic functions which we use into it:

function modK (in generator, in modulonumber)

```
a = (generator ^ -1) mod modulonumber
return ( (a * generator) – 1 ) div modulonumber
```

function getNotPRU (in generator, in modulonumber)

```
g = generator
kJacobi = JacobiSimbol(g,m)
if (kJacobi = -1)
 g = (g * g) mod modulonumber
i = 0
m = g
DO
 i++
 m = modulonumber - m
 m = modK(m, modulonumber)
 if (m<2)
    m = modulonumber div 3
    i = 0
 kJacobi = JacobiSimbol(m,modulonumber)
 if (kJacobi=0)
    return m
WHILE (kJacobi=1) or (i>33)
return m
```

function TryToGetPRU (in generator, in modulonumber)

```
g = generator
kJacobi = JacobiSimbol(g,m)
if (kJacobi = -1)
    g = (g * g) mod modulonumber
e = modulonumber mod 5
if (e in [2,3])
    return = (5*g) mod modulonumber
e = modulonumber mod 6
if (e = 5)
```

```
return = (-3*g) mod modulonumber
e = modulonumber mod 8
if (e in [3,5])
  return = (2*g) mod modulonumber
if (e = 7)
  return = (-2*g) mod modulonumber
i = 0
m = g
DO
  i++
  m = modulonumber - m
  m = modK(m, modulonumber)
  if (m<2)
    m = modulonumber div 3
    i = 0
  kJacobi = JacobiSimbol(m,modulonumber)
  if (kJacobi=0)
    return m
WHILE (kJacobi=-1) or (i>33)
return m
return (m*g) mod modulonumber
```

The steps of the algorithm which we propose to be estimated primality of a number are:

```
(1)
         Pick up small prime number q such that a = p \mod q > 1
         b = a^{p-1} \mod p
(2)
         if b > 1
(3)
           output COMPOSITE
(4)
        JacobiSymbol = 1
(5)
(6)
         f = (p - 1)
        loop i \in 0..4
(7)
  (7.1)
               b = f / 2
  (7.2)
               if\ JacobiSymbol = 1
                 g = TryToGetPRU(a, p)
  (7.3)
  (7.4)
               if\ JacobiSymbol = -1
                 g = getNotPRU(a, p)
  (7.5)
```

```
JacobiSymbol \leftarrow \left(\frac{g}{n}\right)
  (7.6)
                 if\ IacobiSymbol = 0
  (7.7)
                   output COMPOSITE
  (7.8)
                 LegendreSymbol \leftarrow g^b \mod p
  (7.9)
                 if JacobiSymbol <> LegendreSymbol
  (7.10)
                   output COMPOSITE
  (7.11)
                 while (LegendreSymbol = 1) and (b mod 2 = 0)
  (7.12)
  (7.12.1)
                   b \leftarrow b/2
                   LegendreSymbol \leftarrow q^b \mod p
  (7.12.2)
                   if (LegendreSymbol > 1) and (LegendreSymbol < f)
  (7.12.3)
  (7.12.4)
                       output COMPOSITE
  (7.13)
                 a \leftarrow [g * modfK(g,p)] mod p
                 if a = 1 then
  (7.14)
  (7.15)
                   a \leftarrow g
(8)
          output PRIME
```

The proposed algorithm was used to test first 50th millions of prime numbers and test passed successfully. We made some test with several hundreds of big numbers with size of 200, 300 and 400 decimal digits and primality test estimation was correct.

For comparison between new proposal method which can be used as extension of Miller-Rabin primality test and AKS, we can say that AKS is deterministic primality test algorithm and new addition of Millar-Rabin algorithm stays probabilistic one but highly increases possibility of correct estimation to check primality of a number with only 5 main iterations, whatever the size of tested number is. The power of that new approach is in that different sets of number rings without elements intersections between them are used in primality check process. From other comparison point of view, we can say that AKS algorithm in general operates with polynomial mathematical operations that is way Millar-Rabin algorithm is faster and remains most commonly used in worldwide public key cryptographic systems. That is why we directed our efforts to gain a way to increase the probability of the correct result of Miller-Rabin primality test algorithm.

Conclusions

Into suggested method of switching between different subgroups there is no need to use randomly chosen values of integers which have to be used to pass the test criteria. Smaller number of test integers are need to execute the test.

N. Stoianov & A. Ivanov, ISIJ 47, no. 2 (2020): 249-260

If the suggested method in this paper could be improved it is highly possible that the Miller-Rabin primality test could be gained to deterministic one with low complexity.

References

- ¹ William Stallings, *Cryptography and Network Security: Principles and Practice*, 5th. ed. (Prentice Hall Press, 2010).
- ² Ann Murphy and David Murphy, "The Role of Cryptography in Security for Electronic Commerce," *The ITB Journal* 2, no. 1, (2001): 21-50.
- Moses Liskov, "Miller–Rabin Probabilistic Primality Test," In: van Tilborg H.C.A. (eds.) Encyclopedia of Cryptography and Security (Boston, MA: Springer, 2005).
- ⁴ Keith Conrad, "Miller-Rabin Test," *Encyclopedia of Cryptography and Security* (Boston, MA: Springer, 2011).
- Fanyu Kong, Jia Yu, and Lei Wu, "Security Analysis of an RSA Key Generation Algorithm with a Large Private Key," In *Proceedings of the 14th international conference on Infor*mation security (ISC'11) (Berlin, Heidelberg, Springer-Verlag, 2011), 95–101.
- Luis Hernandez Encinas, Jaime Masqué, and Araceli Queiruga-Dios, "An Algorithm to Obtain an RSA Modulus with a Large Private Key," IACR Cryptology ePrint Archive, 2003, p. 45.
- Vijay Menon, "Deterministic Primality Testing Understanding the AKS Algorithm," 2013.
- Robert G. Salembier and Paul Southerington, "An Implementation of the AKS Primality Test," IEEE, May 12, 2005.
- Martin Dietzfelbinger, Primality Testing in Polynomial Time: From Randomized Algorithms to "Primes Is in P," Lecture Notes in Computer Science, (SpringerVerlag, 2004).
- Bulat Mubarakov and Ramilya Rubtsova, "On the Number of Witnesses in the Miller–Rabin Primality Test," Symmetry 12, no. 6 (2020): 890, https://doi.org/10.3390/sym12060890.
- ¹¹ Keith Conrad, "The Miller–Rabin Test," 2011, http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf.
- W. Sierpiński, "Chapter IX Legendre's Symbol and Jacobi's Symbol," North-Holland Mathematical Library 31 (1988): 340-359.

About the Authors

Associate Professor Nikolay **Stoyanov**, PhD, is Deputy Director of the Bulgarian Defence Institute "Professor Tsvetan Lazarov." In 2003 he acquired a doctoral degree in the Advanced Defence Research Institute, "G. S. Rakovski" National Defence College. In 2020 he graduated the "G. S. Rakovski" National Defence College with specialty "Strategic Management of Defence and the Armed Forces." https://orcid.org/0000-0002-4953-4172

Andrey **Ivanov** is an engineer. In 2000, he graduated the Higher Military Artillery School "P. Volov" – Shumen with a degree in automated management systems. https://orcid.org/0000-0003-4466-9569