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A B S T R A C T : 

One of the security conditions of Vernam’s cipher is that the encryption key 
must be greater than or equal to the open text we want to encrypt. At the 
same time, this key must not be repeated in another encryption. Then, each 
change of the encryption key adds security to the encryption process. If a ci-
pher is changed several times while encrypting a single open text, it becomes 
very difficult to decrypt the message. Therefore, our goal is to design a mech-
anism to generate an encryption key using a Tree Parity Machine and a Ge-
netic Algorithm that will be able to create the same encryption keys on both 
sides that enter the encryption process. These keys should change during en-
cryption. One of the first tasks is to create an input population for the genetic 
algorithm from the synchronized Tree parity machine. Therefore, this article 
presents one of the possible ways to create an input population without using 
too many synchronizing TPMs. 
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Introduction 

Security of the internet is still more and more important along with spreading 
the internet connections over the world. Availability of commercial communi-
cation systems cause the potential risk of their misusing from adversary side.9 
There are several scenarios how communication can be misused. One of them 
is to coordinate of adversary attacks against friendly units during operations.  

The motivation of the paper is to create a method to generate cryptographic 
keys for Tree Parity Machine. Tree Parity Machine (TPM) is a special type of 
multilayer forward neural network that is used in cryptography.1 The neural 
network is composed of neurons and synapses. The behaviour of TPM can be 
changed by changing the values of synapses. For secure communication, TPM 
must be set on both sides of the chain the same way.4 We do not intend to send 
all parameters (cryptographic keys) by insecure channel but we would like to 
create them by genetic algorithms independently on both sides of the commu-
nication chain. Results of the genetic algorithm generation on both sides of the 
chain must be identical and the process must be deterministic.  The algorithm 
and the results of the new method of cryptographic key generation by the ge-
netic algorithm are presented in the paper. 
 

Figure 1: Algorithm of GA Key Generation. 
 

1. Tree Parity Machine 

Tree Parity Machine (TPM) is a special type of multilayer forward neural net-
work that is used in cryptography. It is an artificial neural network topology for 
neural cryptography. The basis of TPM topology cryptography is the use of two 
identical artificial neural networks that are able to synchronize after mutual 
learning. TPM consists of K hidden neurons, N inputs to each hidden neuron and 
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one output o. Each entry into a hidden neuron has a generated random weight 
that can take values from –L to + L. 1 These weights are changed by the learning 
rules so that after synchronization, the synapses values, between the respective 
inputs to each hidden neuron in both synchronizing TPMs, are the same. This 
means that the weights values are the same in both TPMs after synchronization. 
Furthermore, these weights may be used directly as an encryption key or may 
be used in any of the encryption key creation algorithms. The number of TPM 
weights depends on the number of hidden neurons and from inputs into each 
hidden neuron.  

The basic assumption for using TPM in cryptography is that synchronizing 
TPMs are initially identical. This means that the number of hidden neurons, in-
puts into each hidden neuron, as well as the possible values that can gain 
weights are identical and are kept secret from attackers. The weight values are 
different due to their random generation but must be kept secret.2 

The TPM synchronization process consists of generating random input x to 
be used as input to both TPMs to calculate the output in both TPMs. Only if the 
output value of both TPMs is the same, some of the learning rules is applied. 
This learning rule must be the same for both TPMs. On the basis of the learning 
rule, there will be updates, that is, a change in weights. The learning rule is ap-
plied until the both TPMs have the same values of weights.3, 6, 7 

2. Genetic Algorithms 

Genetic algorithms (GAs) are adaptive heuristic algorithms mainly applied in the 
tasks of the optimization and the searching. They are based on principles of nat-
ural selection and natural genetics. They belong to the class of evolutionary al-
gorithms and they are using biological evolutionary tools (operator of the mu-
tation, crossover and selection). GA’s heavily rely on inheritance to find solu-
tions for optimization problems.8 

The main idea involved in the GAs is to replicate the randomness of nature 
where the population of individuals adapts to its surroundings through the nat-
ural selection process and behaviour of the natural system. This means that the 
survival and reproduction of a specimen are promoted by the elimination of 
weak features. GAs creates a population in such a way that the feature which is 
dominant that has higher fitness value is replicated more likewise rest of the 
population. Evolution makes GAs a good candidate for the process of generating 
keys.  

The main task of GAs is to create set of keys, which will be used for securing 
communication, on the side of source and the destination of communication 
simultaneously. From set of keys the final user will have a possibility to choose 
the same key on both sides which will be used for setting of parameters of TPM. 
When transfer of data is done new key can be potentially applied for new com-
munication.5 
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Figure 2: Algorithm of GA Key Generation. 
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3. Algorithm of Cryptographic Key Generation (by Genetic Algorithms) 

The algorithm of key generation for TPM is divided to 4 basic steps (Figure 2). 
Last two steps are repeated until final condition is met. The 3rd step is repeated 
until the expected size of population is reached (e.g. 80 or 100 genotypes). The 
4th step uses all three basic genetic operations (selection, crossover and muta-
tion) to produce final population, which is used to define parameters of TPM. 
The final condition is represented by realisation of defined numbers of itera-
tions.  

Figure 3: Genotype structure. 

Step 1  Loading of initial keys set 

The initial key set is input to the process of key generation. The initial key set 
consists of fixed number of keys (e.g. 10) and each key is composed of values of 
TPM synapses (Figure 3). The range for every synapse is from -7 to 7. 

 

Figure 4: Single point crossover. 

Step 2 Crossover of initial key set  

On the base of the loaded key set the initial population of genotypes is created. 
Each genotype represents one key. After that selected genotypes are used to 
create new population with the same size by single point crossover operator, 
which creates two new offspring genotypes on the base two of parent´s geno-
type (Figure 4). The only one crossover point was set after 2nd gene of the par-
ent´s genotypes. During the execution of the algorithm, the position of the 
crossover point is changed in the range between 1st and 9th genes. 
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Step 3 Population size increase  

Input to the step 3 is population created in step 2. At first they are selected two 
genotypes for crossover operation. After that single point crossover operator is 
realized over two parent genotypes and creates two new offspring genotypes. 
The only one crossover point was set after randomly generated position in the 
parent´s genotypes. This operation is repeated for whole population. The new 
created genotypes are added to the actual population. The step 3 is repeated 
until the final size of population is reached (e.g. 100 genotypes) and it can be 
set by user. The optimal size of population is 100 genotypes which represents 
100 possible setting for TPM. 

 
Figure 4: Mutation operation. 

Step 4 Population size increase 

Input to the step 3 is population created in step 2. At first, they are selected two 
genotypes for crossover operation. After that single point crossover operator is 
realized over two parent genotypes and creates two new offspring genotypes. 
The only one crossover point was set after randomly generated position in the 
parent´s genotypes. This operation is repeated for whole population. The new 
created genotypes are added to the actual population. The step 3 is repeated 
until the final size of population is reached (e.g. 100 genotypes) and it can be 
set by user. The optimal size of population is 100 genotypes which represents 
100 possible setting for TPM. 

The mutation rate is set to value 0.002. It can be used several types of muta-
tion: flipping of bits, boundary mutation, non-uniform mutation, uniform muta-
tion and Gaussian mutation.  

The size of population after realisation of 4th step is the same (no new geno-
types are added to the population). 

4. Frequency Test of Generated Cryptographic Keys  

Frequency test tells us whether the output of the genetic algorithms fulfils the 
requirements expected from the new cryptographic keys. Moreover, the quality 
of new cryptographic keys can be commented considering test results. Any new 
cryptographic key is composed of some parts of the initial population which was 
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received during initialization of the communication chain. The major require-
ment is continuous uniform distribution of values of final population. Each 
member of the analysed population is equally probable for the continuous uni-
form distribution. 

The result of the frequency test of the proposed method after 10 iterations 
of the GAs is shown in Fig. 5. In this figure ten different colours are used to 
depict the origin of the cryptographic key values. Every colour is equal to the 
one of the initial keys which was received in the beginning. Whole string of syn-
apses (cryptographic key) is represented by the one column in Fig. 5. Every value 
from the final population has frequency of appearance 1%, which is appropriate 
result. 
 

 

Figure 5: Population of genotypes on the base of parents from initial population. 

Conclusions 

In today communication technology, data encryption algorithms are used to 
provide secure communication between users.4 So in this study, the possibility 
of using of genetic algorithms for cryptographic keys generation was analysed.  

For a mechanism of generation of the cryptographic key using Tree Parity 
Machine and genetic algorithm that will be identical on both sides of the com-
munication chain for the encryption algorithm, we have designed new method 
to create a sufficiently large population without using too many synchronizing 
TPMs. By doing so, we can ensure a great variety of weights that can be used to 
create the encryption key. Thus, the encryption key can be changed quickly 
while encrypting a single message, making it difficult for the attacker to decrypt 
the encrypted message. Our next effort will be aimed to create a model of a 
cryptographic system that will use the resulting population. 
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