

Michal Turčaník & Martin Javurek
vol. 43, no. 1 (2019): 54-61

https://doi.org/10.11610/isij.4305

Published since 1998 ISSN 0861-5160 (print), ISSN 1314-2119 (online)
Research Article

 Corresponding Author: michal.turcanik@aos.sk; martin.javurek@aos.sk

Cryptographic Key Generation
by Genetic Algorithms

Michal Turčaník and Martin Javurek

Armed Forces Academy, Liptovsky Mikulas, Slovakia, http://www.aos.sk

A B S T R A C T :

One of the security conditions of Vernam’s cipher is that the encryption key
must be greater than or equal to the open text we want to encrypt. At the
same time, this key must not be repeated in another encryption. Then, each
change of the encryption key adds security to the encryption process. If a ci-
pher is changed several times while encrypting a single open text, it becomes
very difficult to decrypt the message. Therefore, our goal is to design a mech-
anism to generate an encryption key using a Tree Parity Machine and a Ge-
netic Algorithm that will be able to create the same encryption keys on both
sides that enter the encryption process. These keys should change during en-
cryption. One of the first tasks is to create an input population for the genetic
algorithm from the synchronized Tree parity machine. Therefore, this article
presents one of the possible ways to create an input population without using
too many synchronizing TPMs.

A R T I C L E I N F O :

RECEIVED: 19 JUN 2019

REVISED: 22 AUG 2019

ONLINE: 16 SEP 2019

K E Y W O R D S :

genetic algorithms, tree parity machine, crypto-
graphic keys generation

 Creative Commons BY-NC 4.0

mailto:michal.turcanik@aos.sk
mailto:martin.javurek@aos.sk
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Cryptographic Key Generation by Genetic Algorithms

 55

Introduction

Security of the internet is still more and more important along with spreading
the internet connections over the world. Availability of commercial communi-
cation systems cause the potential risk of their misusing from adversary side.9
There are several scenarios how communication can be misused. One of them
is to coordinate of adversary attacks against friendly units during operations.

The motivation of the paper is to create a method to generate cryptographic
keys for Tree Parity Machine. Tree Parity Machine (TPM) is a special type of
multilayer forward neural network that is used in cryptography.1 The neural
network is composed of neurons and synapses. The behaviour of TPM can be
changed by changing the values of synapses. For secure communication, TPM
must be set on both sides of the chain the same way.4 We do not intend to send
all parameters (cryptographic keys) by insecure channel but we would like to
create them by genetic algorithms independently on both sides of the commu-
nication chain. Results of the genetic algorithm generation on both sides of the
chain must be identical and the process must be deterministic. The algorithm
and the results of the new method of cryptographic key generation by the ge-
netic algorithm are presented in the paper.

Figure 1: Algorithm of GA Key Generation.

1. Tree Parity Machine

Tree Parity Machine (TPM) is a special type of multilayer forward neural net-
work that is used in cryptography. It is an artificial neural network topology for
neural cryptography. The basis of TPM topology cryptography is the use of two
identical artificial neural networks that are able to synchronize after mutual
learning. TPM consists of K hidden neurons, N inputs to each hidden neuron and

Michal Turčaník & Martin Javurek, ISIJ 43, no. 1 (2019): 54-61

 56

one output o. Each entry into a hidden neuron has a generated random weight
that can take values from –L to + L. 1 These weights are changed by the learning
rules so that after synchronization, the synapses values, between the respective
inputs to each hidden neuron in both synchronizing TPMs, are the same. This
means that the weights values are the same in both TPMs after synchronization.
Furthermore, these weights may be used directly as an encryption key or may
be used in any of the encryption key creation algorithms. The number of TPM
weights depends on the number of hidden neurons and from inputs into each
hidden neuron.

The basic assumption for using TPM in cryptography is that synchronizing
TPMs are initially identical. This means that the number of hidden neurons, in-
puts into each hidden neuron, as well as the possible values that can gain
weights are identical and are kept secret from attackers. The weight values are
different due to their random generation but must be kept secret.2

The TPM synchronization process consists of generating random input x to
be used as input to both TPMs to calculate the output in both TPMs. Only if the
output value of both TPMs is the same, some of the learning rules is applied.
This learning rule must be the same for both TPMs. On the basis of the learning
rule, there will be updates, that is, a change in weights. The learning rule is ap-
plied until the both TPMs have the same values of weights.3, 6, 7

2. Genetic Algorithms

Genetic algorithms (GAs) are adaptive heuristic algorithms mainly applied in the
tasks of the optimization and the searching. They are based on principles of nat-
ural selection and natural genetics. They belong to the class of evolutionary al-
gorithms and they are using biological evolutionary tools (operator of the mu-
tation, crossover and selection). GA’s heavily rely on inheritance to find solu-
tions for optimization problems.8

The main idea involved in the GAs is to replicate the randomness of nature
where the population of individuals adapts to its surroundings through the nat-
ural selection process and behaviour of the natural system. This means that the
survival and reproduction of a specimen are promoted by the elimination of
weak features. GAs creates a population in such a way that the feature which is
dominant that has higher fitness value is replicated more likewise rest of the
population. Evolution makes GAs a good candidate for the process of generating
keys.

The main task of GAs is to create set of keys, which will be used for securing
communication, on the side of source and the destination of communication
simultaneously. From set of keys the final user will have a possibility to choose
the same key on both sides which will be used for setting of parameters of TPM.
When transfer of data is done new key can be potentially applied for new com-
munication.5

Cryptographic Key Generation by Genetic Algorithms

 57

Figure 2: Algorithm of GA Key Generation.

Loading of initial
keys (10)

Selection from
initial population

Crossover of
selected genotypes

Selection from
population

Crossover of
selected genotypes

Adding new genotypes to
the population

Reached
population

size

No

Yes

Step 1

Step 2

Step 3

Step 4

Mutation of selected
genotypes

Selection from
population

Crossover of
selected genotypes

N = 0

Set of keys for TPM

No

Yes

N = N - 1

Michal Turčaník & Martin Javurek, ISIJ 43, no. 1 (2019): 54-61

 58

3. Algorithm of Cryptographic Key Generation (by Genetic Algorithms)

The algorithm of key generation for TPM is divided to 4 basic steps (Figure 2).
Last two steps are repeated until final condition is met. The 3rd step is repeated
until the expected size of population is reached (e.g. 80 or 100 genotypes). The
4th step uses all three basic genetic operations (selection, crossover and muta-
tion) to produce final population, which is used to define parameters of TPM.
The final condition is represented by realisation of defined numbers of itera-
tions.

Figure 3: Genotype structure.

Step 1 Loading of initial keys set

The initial key set is input to the process of key generation. The initial key set
consists of fixed number of keys (e.g. 10) and each key is composed of values of
TPM synapses (Figure 3). The range for every synapse is from -7 to 7.

Figure 4: Single point crossover.

Step 2 Crossover of initial key set

On the base of the loaded key set the initial population of genotypes is created.
Each genotype represents one key. After that selected genotypes are used to
create new population with the same size by single point crossover operator,
which creates two new offspring genotypes on the base two of parent´s geno-
type (Figure 4). The only one crossover point was set after 2nd gene of the par-
ent´s genotypes. During the execution of the algorithm, the position of the
crossover point is changed in the range between 1st and 9th genes.

w00 w01 w02 w10 w11 w12 ... wIJ

Values of TPM synapses

P1

Crossover point set to 2nd gene

P1 P1 P1 P1 P1 P1 P1 P1 P1

P2 P2 P2 P2 P2 P2 P2 P2 P2 P2

P2 P2 P2 P1 P1 P1 P1 P1 P1 P1

P1 P1 P1 P2 P2 P2 P2 P2 P2 P2

Parent 1

Parent 2

Child 1

Child 2

Cryptographic Key Generation by Genetic Algorithms

 59

Step 3 Population size increase

Input to the step 3 is population created in step 2. At first they are selected two
genotypes for crossover operation. After that single point crossover operator is
realized over two parent genotypes and creates two new offspring genotypes.
The only one crossover point was set after randomly generated position in the
parent´s genotypes. This operation is repeated for whole population. The new
created genotypes are added to the actual population. The step 3 is repeated
until the final size of population is reached (e.g. 100 genotypes) and it can be
set by user. The optimal size of population is 100 genotypes which represents
100 possible setting for TPM.

Figure 4: Mutation operation.

Step 4 Population size increase

Input to the step 3 is population created in step 2. At first, they are selected two
genotypes for crossover operation. After that single point crossover operator is
realized over two parent genotypes and creates two new offspring genotypes.
The only one crossover point was set after randomly generated position in the
parent´s genotypes. This operation is repeated for whole population. The new
created genotypes are added to the actual population. The step 3 is repeated
until the final size of population is reached (e.g. 100 genotypes) and it can be
set by user. The optimal size of population is 100 genotypes which represents
100 possible setting for TPM.

The mutation rate is set to value 0.002. It can be used several types of muta-
tion: flipping of bits, boundary mutation, non-uniform mutation, uniform muta-
tion and Gaussian mutation.

The size of population after realisation of 4th step is the same (no new geno-
types are added to the population).

4. Frequency Test of Generated Cryptographic Keys

Frequency test tells us whether the output of the genetic algorithms fulfils the
requirements expected from the new cryptographic keys. Moreover, the quality
of new cryptographic keys can be commented considering test results. Any new
cryptographic key is composed of some parts of the initial population which was

1 0 0 1 1 1 0 1 0 1

1

Genotype before mutation

Genotype after mutation

0 1 1 1 0 1 0 1 1

Michal Turčaník & Martin Javurek, ISIJ 43, no. 1 (2019): 54-61

 60

received during initialization of the communication chain. The major require-
ment is continuous uniform distribution of values of final population. Each
member of the analysed population is equally probable for the continuous uni-
form distribution.

The result of the frequency test of the proposed method after 10 iterations
of the GAs is shown in Fig. 5. In this figure ten different colours are used to
depict the origin of the cryptographic key values. Every colour is equal to the
one of the initial keys which was received in the beginning. Whole string of syn-
apses (cryptographic key) is represented by the one column in Fig. 5. Every value
from the final population has frequency of appearance 1%, which is appropriate
result.

Figure 5: Population of genotypes on the base of parents from initial population.

Conclusions

In today communication technology, data encryption algorithms are used to
provide secure communication between users.4 So in this study, the possibility
of using of genetic algorithms for cryptographic keys generation was analysed.

For a mechanism of generation of the cryptographic key using Tree Parity
Machine and genetic algorithm that will be identical on both sides of the com-
munication chain for the encryption algorithm, we have designed new method
to create a sufficiently large population without using too many synchronizing
TPMs. By doing so, we can ensure a great variety of weights that can be used to
create the encryption key. Thus, the encryption key can be changed quickly
while encrypting a single message, making it difficult for the attacker to decrypt
the encrypted message. Our next effort will be aimed to create a model of a
cryptographic system that will use the resulting population.

References
1 Ido Kanter and Wolfgang Kinzel, “The Theory of Neural Networks and Cryptography,”

Quantum Computers and Computing 5, no. 1 (2005): 130-140.
2 Andreas Ruttor, Wolfgang Kinzel, and Ido Kanter, “Dynamics of Neural Cryptog-

raphy,” Statistical, Nonlinear, and Soft Matter Physics, Physical review. E 75, 056104
(2007).

3 Wolfgang Kinzel and Ido Kanter, “Neural Cryptography,” 9th International Confer-
ence on Neural Information Processing, Singapore, vol. 3 (2002): 1351-1354.

Cryptographic Key Generation by Genetic Algorithms

 61

4 S. Santhanalakshmi, K. Sangeeta, and Gopal Krishna Patra, “Design of Stream Cipher
for Text Encryption Using Soft Computing based Techniques,” IJCSNS International
Journal of Computer Science and Network Security 12, no. 12 (2012): 149-152.

5 Andreas Ruttor, Wolfgang Kinzel, Rivka Naeh, and Ido Kanter, “Genetic Attack on
Neural Cryptography,” Phys. Rev. E 73.036121 (2006).

6 Martin Javurek and Michal Turčaník, “Synchronization of Two Tree Parity Machines,”
2016 New Trends in Signal Processing (NTSP), Demanovska Dolina (2016): 1-4,
https://doi.org/10.1109/NTSP.2016.7747782.

7 Martin Javurek and Michal Turčaník, “Synchronization Verification Improvement of
Two Tree Parity Machines Using Polynomial Function,” 2018 New Trends in Signal
Processing (NTSP), Demanovska Dolina (2018): 1-5, https://doi.org/10.23919/
NTSP.2018.8524106.

8 Michal Turcanik, “The Optimalization of the Artificial Neural Network and Production
Systems by Genetic Algorithms,” MATLAB 2002: Proceedings of the Conference,
Prague (2002): 562-568.

9 Michal Turcanik and Martin Javurek, “Hash Function Generation by Neural Network,”
2016 New Trends in Signal Processing (NTSP), Demanovska Dolina (2016): 1-5.

About the Authors

Michal Turčaník is an associate professor at the Department of Informatics at the Armed
Forces Academy in Liptovsky Mikulas. He has been teaching different subjects for more
than 20 years. He is a Panel Member of the STO IST organization for the Slovak republic.
His scientific research is focusing on reconfigurable logic, artificial intelligence and
computer networks.

Martin Javurek is an assistant professor at the Department of Informatics at the Armed
Forces Academy in Liptovsky Mikulas. In 2005, he graduated (MSc) at Armed Forces
Academy in Liptovsky Mikulas as a civil student. He holds a Ph.D. degree in the field of
Informatics, received in 2017 from Armed Forces Academy in Liptovsky Mikulas. His
scientific research is focusing on artificial intelligence and cryptology.

	Introduction
	1. Tree Parity Machine
	2. Genetic Algorithms
	3. Algorithm of Cryptographic Key Generation (by Genetic Algorithms)
	Step 1 Loading of initial keys set
	Step 2 Crossover of initial key set
	Step 3 Population size increase
	Step 4 Population size increase
	4. Frequency Test of Generated Cryptographic Keys
	Conclusions
	References

