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GARBLED CIRCUITS: OPTIMIZATIONS AND
IMPLEMENTATIONS
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Abstract: Garbled Circuits were first introduced by Yao in 1984 as a generic approach
to perform secure two-party computation between two semi-honest participants. While
the result already has a great theoretical significance, it was believed to have very lim-
ited applicability due to performance aspects. In the last ten-fifteen years, though,
many researchers revived this approach by optimizing one aspect after the other, which
results in total in several orders of magnitude of speed-up. In this article, we start by
describing the original garbled circuits construction through a simple example. We
then review the optimizations of garbled circuits, from point-and-permute to half-
gates, going through garbled row reduction, oblivious transfer extensions, and free
XOR. Finally, we present several projects that implemented garbled circuits with some
of these optimizations, starting from fairplay to the more recent approaches of OblivC
and ObliVM.

Keywords: Cryptography, Garbled Circuits, Secure Multi-Party Computation, Opti-
mizations, Implementations

Introduction

Assume that two competing companies want to perform analytics on their respective
databases. If each company computes the analytics on its own database, they get some
result, but if they perform the analytics on the concatenation of both databases, they
will get more accurate results (because the sample space will be larger). However,
they do not want to reveal their respective database to the other party as this is a pre-
cious and private asset. Their goal is, therefore, to be able to perform the analytics on
the concatenation of their private databases: both companies agree to learn the analyt-
ics result, but they do not want to leak information about their database to the other
entity. This is a typical application scenario of secure multi-party computation.

This problem was addressed in the early eighties by Andrew Yao'? who proposed
garbled circuits as a generic secure two-party computation protocol. The high-level
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idea is that any function represented as a circuit can be garbled by one party and
evaluated by the other to enable computation on private data without leaking any ad-
ditional information on the data beyond the result of the computation itself. While
this seminal work was of great theoretical significance, it was regarded as unpractical
for years. However, in the past fifteen years many researchers worked on the concept
again and proposed optimizations that improved the efficiency of garbled circuits by
several orders of magnitude. All these optimizations paved the way to the develop-
ment of libraries that use garbled circuits as a core building block to perform secure
computation.

In this article, we start by explaining through an example the fundamentals on garbled
circuits in section 1. We then present several optimizations that are key to improve
the performance of garbled circuits in section 2. Finally, we present some of the re-
cent libraries that implement garbled circuits and beyond in section 3.

1. Garbled circuits

Garbled circuits are a generic secure two-party computation protocol, which were in-
troduced by Yao'? first and then improved in many subsequent works. We adopt a
description by example to better explain how garbled circuits work. Assume we have
two players Alice and Bob who choose two bits each and want to check whether some
of their choices are the same or not. We already observe here that the function that
the players want to compute is publicly known to both entities but the inputs are pri-
vate. For the sake of simplicity we assume the output of the function should be 1 if
both inputs are different and 0 if they have at least one common bit.

1.1. Standard circuits

The first step is to build a circuit that achieves this functionality. Converting a func-
tion to a circuit is out of scope of this article, but in this simple case, it is easy to
check that the following circuit achieves the required functionality.
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Figure 1: Sample circuit.

In this circuit x0 and x1 are the input of Alice, y0 and y1 the input of Bob, G1 and G2
are two XOR gates, G3 is an AND gate and w1, w2 w3 are the output wires of each
gate, w3 being the final output of the circuit. In such a classical circuit each wire (in-
cluding the input) is a bit which can take value 0 or 1, and the gate are defined by
their truth table which are depicted below:

Table 1: Truth table of the XOR gate (left) and the AND gate (right).

X y W X y w
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

Evaluation of standard circuits

To evaluate the circuit, one needs to go from left to right and top to bottom and get
the output of each gate depending on its inputs through a lookup in the truth table.
For example if x0=0, x1=0, y0=0, y1=1, then w1=0 (because G1 is an XOR gate with
input 0 and 0 which corresponds to the first row of the truth table) and w2=1 (because
G2 is an XOR gate with input 0 and 1 which corresponds to the second row of the
truth table) and w3=0 (because G3 is an AND gate with input 0 and 1 which corre-
sponds to the second row of the truth table).

Performance Analysis
In terms of performance, we observe that each gate is represented by a table which
can be represented by four bits (assuming the rows always follow the same order). So
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the communication complexity is simply 4g+n, where g is the number of gates and n
is the number of input bits. In terms of computation complexity, we have to perform a
simple lookup per gate. Evaluating a circuit is thus extremely efficient.

1.2.  Construction of garbled circuits

Now we would like to do the same while hiding the input. The idea of Yao is the fol-
lowing. We assume a general security parameter . In the current state of the art «
would typically be 128 bits, but for the sake of simplicity here, we will make it only
16 bits for illustration. Remember that we will consider one entity as the garbler (Al-
ice, for example) and the second as the evaluator.

Alice starts by choosing two random numbers of size «k for each input and each wire.
These random numbers will correspond to the garbling of the 0 and 1 values of these
wires. The important security properties achieved by this step are:

e  The evaluator will learn one of these two values, but he will not be able to
learn the other one (because the other one is unrelated to the first one contra-
ry to the deterministic values 0 and 1).

e When the evaluator learns one of the values, he does not know whether this
value corresponds to 0 or to 1.

Note that the garbler is choosing these random values both for himself and for the in-
put of the evaluator. An instantiation of this phase is represented in Error! Reference
source not found., where the top number represents the garbling corresponding to
the value 0 and the below one the garbling corresponding to the value 1 for each wire
(these are 4 hexadecimal digits corresponding to 16 bits).

" AOQAE
EF65 wi

; 0451

4 98C3 9348 w3 603E
G3 :
< B456 8462 CEFA
w2 [ Bac2

y1

71F1

Figure 2: Sample circuit with garblings for the wires.

The truth table of the gates should now be represented with the garbled wires instead
of the 0 and 1 values. For example, the table of G1 would look as in Table 2.
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Table 2: Truth table of G1 with garbled values.

x0 y0 wl
AOQ4E 1267 0451
AQ4E 98C3 9348
EF65 1267 9348
EF65 98C3 0451

However, this is just the first step of computing the garbled truth table. Indeed the
current form still leaks a lot of information and one can easily deduce that this table
corresponds to XOR or its complement. If one knows on top of that that this is the
truth table of an XOR (as the circuit itself is not supposed to be secret) then one can
deduce relations among the garbled wires. Finally, this directly reveals the different
possible values of the output wires.

To solve these issues, the second step is to hide the values of the input and to encrypt
the output with the input. Let us denote by Ex and encryption algorithm under key k,
then each row of the table is encrypted twice with the keys being the garblings of the
input. This is best seen visually in table 3.

Table 3: Garbled truth table of G1 after step 2.

wl
Enose(E1267(0451))
E aose(Eosc3(9348))
Eeres(E1267(9348))
Eeres(Egsca(0451))

Finally to avoid revealing the information about the order of the inputs (and whether
they correspond to a 0 or a 1), the garbled truth table needs to be randomly shuffled.

An example of final garbled truth tables for the circuit is depicted in Table 4.
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Table 4: Final garbled truth table of the three gates.

wl w2 w3
Enose(E1267(0451)) Egass(E71r1(B4C2)) Eo34s(Esa62(603E))
Eeres(E1267(9348)) Esops(E71r1(8462)) Eos4s(Egac2(CEFA))
Eeres(Eosca(0451)) Egass(Eo3s6(8462)) Eo4s1(EB4c2(603E))
Enose(Eosca(9348)) Esops(Egses(B4C2)) Eoss51(Es462(603E))

Note that even though Alice is constructing the whole garbled circuit and know all the
garblings of all wires, she is not able to evaluate the circuit because she doesn’t know
the actual values of Bob’s input.

1.3.  Transfer of the garbled circuit

With this, the garbler has finished the computations he needs to perform. What is re-
maining is for him to send the garbled circuit to the evaluator (Bob). More precisely,
he sends to Bob:

e The garbled truth tables, as shown in Table 4,

e His garbled inputs. In our example, Alice’s input were x0=0 and x1=0,
hence the corresponding garbled inputs that he will send to Bob are
X0=A04E and x1=B456.

Note that Bob cannot link the garbled inputs of Alice to their clear text counterparts.
The last step before evaluation is that Bob needs to get his input. The tricky part here
is that:

e Bob should only get the garbled version of his input and not the garbled ver-
sion of the complement to his input (otherwise he would be able to compute
the function on all possible values of his variables). Hence Alice cannot
simply send to Bob both garbled values of each input of Bob.

e Alice should not learn the input of Bob as well, hence Bob cannot simply
ask Alice to send the garbled values corresponding to y0=0 and y1=1 for
privacy reasons.

To solve these seemingly contradictory requirements. Alice and Bob enter an oblivi-
ous transfer protocol which satisfies exactly these requirement. In a 1 out of 2 oblivi-
ous transfer protocol the sender (Alice) has two values and the receiver (Bob) gets
one (and only one) of these inputs without Alice knowing which one he received.
Oblivious transfer protocols are a topic of their own that we will not discuss in this
paper, but the interested reader can read the seminal contributions of Rabin® and Even
et al.* or read the survey by Phong.’
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Hence, through two instances of Oblivious Transfer, Bob gets the garblings to his in-
puts which are y0=1267 and y1=71F1.

1.4.  Evaluation of garbled circuits

Now Bob has all the required information to evaluate the circuit. He proceeds gate by
gate. For each gate he has two garblings which allow him to decrypt only one of the
four rows. To be more precise:

e He starts with G1, where he has the input are xX0=AO4E and y0=1267 that
allow him to decrypt the first row and get the values w1=0451.

e For G2, he has the garblings x1=B456 and y1=71F1 that enable him to
decrypt also the first row of the truth table of G2 and resulting in the garbled
value of w2=B4C2.

e For G3, the garbled inputs are w1=0451 and w2=B4C2, which enable Bob
to decrypt the third row of G3 and leads to the garbled value of w3=603E.

This concludes the evaluation of the garbled circuit and Bob returns the garbling
603E to Alice who is able to translate it as 0. Note that in all the evaluation steps,
Bob is unable to determine whether he is evaluating a 0 or a 1 but he is still able to
reach the garbled output of the circuit which he can decode to the clear text output of
the function with the help of Alice. Hence, Alice and Bob are able to privately com-
pute the function on their inputs. Of course this is an informal argument about the se-
curity of the scheme, for a formal proof please refer to the work of Lindell ad Pinkas.®

1.5. Performance of garbled circuits

Contrary to the case of clear text evaluation, we observe that each gate is represented
by a table which contains four encrypted values each of size « bits (16 bits in our ex-
ample, but remember that in typical applications nowadays it would rather be 128
bits). The inputs are of the same size k so the communication complexity is now
(4g+n) « bits (plus the cost of oblivious transfer, which is not negligible). In terms of
computation complexity, the evaluator has to try four pairs of decryption operations
(at most) for each gate hence evaluation is also much slower than in the clear text
case.

We will now describe the optimizations to reduce both communication and computa-
tion complexity.

2. Garbled Circuits’ Optimization

To optimize garbled circuits there are two aspects to take care of: computation and
communication complexity. First note that the circuit that we took as example only
included AND and XOR gates. This is was done on purpose as most optimizations
focus on these two gates. And since the set {XOR, AND} is functionally complete it
means that any circuit can be written with these two gates alone, hence it is enough to
focus on these two gates.



18 Garbled Circuits: Optimizations and Implementations

Point and Permute

The first optimization was introduced by Beaver, Micali and Rogaway” in 1990 and is
called Point and Permute. It mainly focuses on improving the computation complexi-
ty to make the circuit evaluation more efficient. Remember that in the basic Yao gar-
bled circuits the evaluator had to try to decrypt the four rows and only succeed in one.

The idea of point and permute is to add a flag called selection bit to each garbling.
For each wire, one of the garblings will have the selection bit set to 0 and the other
will have the selection bit set to 1. This selection bit is chosen randomly and inde-
pendently of the real value of the wire (it will correspond to the real value with prob-
ability half which gives no information to an attacker).

An example of instantiation is shown in Error! Reference source not found..

0 EF65/1 wi
04511
W 98C30 93480 w3 603EI0
" 846210 CEFAJ1
w2 B4cC2

v 71F110

Figure 3: Garbled circuit with selection bits.

The truth tables are then ordered according to the selection bit in the classical order
of rows 00, 01, 10, 11. On top of that the ciphertexts no longer need to be from a
CPA-secure encryption scheme and can instead be instantiated as C®H(A|B) where H
is a hash function. Hence both encryption and decryption are faster. The truth table
thus become as shown in Table 5.

Note that the select bit of the output is XORed with the hash as well, hence it is not
visible in clear as shown in the table.

Now the main advantage is that the evaluator knows directly which row he will be
able to decrypt and he no longer need to try all the four possible rows: he just has to
decrypt the row corresponding to the selection bit he sees at the end of the input wires
for the gate. For example for gate 1, Bob has the input x0=A04E|0 and y0=1267|1,
hence Bob directly goes to the second row of the first truth table and gets as output
w1=0451|1. And the same goes for the two other gates.



Abdullatif Shikfa

19

Table 5: Truth table with point and permute.

wl w2 w3
H(A04E|0]98C3]0)®9348|0 H(30D5|0[71F1|0)®84620 H(9348/0[8462|0)®603E|0
H(AO4E|0[1267|1)@®0451|1 H(30D5(|0[9386|1)®B4C2|1 H(9348/0|B4C2|1)®CEFA|1
H(EF65/1/98C3|0)®0451|1 H(B456(1[71F1/0)®B4C2|1 H(0451]1|B4C2|1)®603E|0
H(EF65|1/1267|1)®9348)0 H(B456(1|9386|1)®8462|0 H(0451]1(8462|0)®603E|0

The advantage of this technique is clear: the computation time is reduced by a factor
up to four at the cost of just one more bit for each wire.

Row reduction

In 1999, Naor, Pinkas and Sumner® proposed a technique to reduce the communica-
tion complexity by reducing the number of rows required for each gate. The idea is
the following: instead of choosing all garblings randomly it is possibly to chose one
of the garblings of the output such that its encryption is 0. For example 1999: tech-
nique to reduce the number of rows per AND gate from 4 to 3. For example assume
that we choose the first row of each table to be 0. This means that we will replace the
value 9348|0 of wl by H(AO4E|0|98C3|0). In that case the first row of G1 will be
H(AO04E|0|98C3|0)® H(A04E|0|98C3|0)=0.

The other value can still be chosen randomly so we will keep it as 0451|b where b is
the complement of the last bit of H(AO04E|0|98C3|0). Similarly 8462|0 will be re-
placed by H(30D5|0|71F1]|0) and 603E|0 will be replaced by H(H(AO4E|0]98C3|0)|
H(30D5|0|71F1]0)).

An example of the full truth table of G1 is shown in Table 6. Hence all the first rows
are now 0 and there is no need to send this row. In other words, each garbled table
now contains only three rows, which reduces the communication complexity by a fac-
tor of 25%.

This technique was enhanced by Pinkas et al.® in 2009 to reduce further the number
of rows to 2. However, this further improvement is not compatible with the free XOR
technique (presented in the next section) and is of limited use for this reason. We
will, therefore, not cover it in this article.



20 Garbled Circuits: Optimizations and Implementations

Table 6: Garbled truth table of G1 with garbled row reduction

wl
0
H(AO4E|0[1267|1)®0451]b
H(EF65|1|98C3|0)®0451|b
H(EF65|1]1267|1)® H(AO04E|0]98C3|0)

Free XOR

Kolesnikov and Schneider *° proposed in 2008 a technique that makes evaluation of
XOR gates for free almost. They proved that Yao’s garbled circuit technique remains
secure if one imposes a fixed difference between the garblings of the 0 and 1 of all
wires. Concretely it means that we can choose at random one of the garbling of each
wire (say the one corresponding to zero) and we also choose at random a fixed differ-
ence d. Then the garbling of the 1 will be computed as the garbling of the 0 XOR the
fixed difference d. The advantage now is that we can fix the garbling of the output of
an XOR gate as the XOR of the inputs.

Let us take as an example the gate G1. We keep the garblings of the 0 values of the
two input as they are, namely AO4E|0 and 1267|1. We choose at random a common
difference say 258B|1 (it will be the same for the whole circuit). Then the garblings of
the 1 value of the input will be respectively A04E|0©258B|1=85C5|1 and
1267|1258B|1=37EC|0. For the output wire, the garbling of the 0 will exactly be the
XOR of the garblings of the 0 of the input, namely A04E|01267|1=B229|1, and the
garbling of the 1 will be the previous XOR the common difference namely
B229|1©258B|1=97A2|0. Now it is easy to verify that with this set of input and out-
put, the output is always directly the XOR of the input (we constructed it this ways
for the 0 values, but it works for all values). This simply means that by adopting this
construction one does not need to send a garbled truth table for XOR gates, and that
evaluation of an XOR gate consists simply of XORing the value of the input; hence it
is essentially free (compared to the need to decrypt in the case of other gates). On top
of that, this technique is compatible with the first garbled row reduction technique
presented in the previous section. In summary, we have now:

o free XOR gates,
e AND gates have only three rows.

This means that to optimize the evaluation time of garbled circuits, it is interesting to
reduce the number of AND gates as much as possible even at the cost of increasing
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the number of XOR gates. In Figure 4, we show how the circuit with the garblings in-
cluding all the previously mentioned improvements. In this figure, we draw in red the
garblings that are computed to satisfy the free XOR requirement, and in green the
garbling that is computed to satisfy the garbled row requirement.

97A210 w3 H(97A2|0127D0IC

27D0|0 H(97A2(|0|27D0I0)
w2 | 025BN1 =138B/1

E&ODIO

Figure 1: Garbled circuit with free XOR and garbled row reduction.

For this circuit, the only truth table that needs to be sent by Alice to Bob is the one
corresponding to gate 3 and it is represented in Table 7.

Table 7: Garbled truth table of G3 with garbled row reduction and free XOR.

w3

0

H(97A2(0]025B|1)@H(97A2|0[27D0|0)®258B)1

H(B229]1/27D0j0)®H(97A2/0]27D0|0)

H(B229]1/025B|1)®H(97A2/0j27D0|0)

Half Gates

With the previous improvements, we already have free XOR; hence we cannot im-
prove XOR gates further. Concerning the AND gate, we mentioned that Pinkas et al.
proposed a technique to reduce the number of rows to two, but it is not compatible
with the free XOR technique.

Recently, in 2015 to be more precise Zahur, Rosulek and Evans ** managed to come
up with a technique that makes free XOR compatible with only two rows per AND
gate. Their technique, however, involves the introduction of specific gates that have
to be evaluated in a non-standard way.
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The idea is to divide each AND gate in two half gates: one generator half gate and
one evaluator half gate. To illustrate this in our example, we focus on G3 only as this
is the only AND gate we have. Zahur et al. made the following observation:

W3=w1l AW2 =Wl A (rdrédw2) = (WL A1) ® (Wl A (rdw2))

where r is the select bit of the false value of w2 (0 in our case). This means that the
AND gate G3 can be converted to three gates:

e An AND gate between w1 and r, and r is known to Alice (the garbler), called
a generator half gate

e An AND gate between wl and réw2, and ré&w?2 is known to Bob (the
evaluator) at evaluation time, because it corresponds to the select bit of the
wire w2. This gate is called an evaluator half gate.

e An XOR gate between the previous two, which is implemented using the
free XOR technique.

The key idea is that each half gate can be encoded with one encryption only, hence
performing this transformation is efficient, and will result in total in only two encryp-
tions (two rows) per AND gate.

Generator half gate

For the generator half gate, the garbler knows the value of r. If the value of r is 0, the
garbler just needs to encode a unary gate that always outputs 0, if the value of ris 1
then the garbler needs to encode a unary gate that corresponds to the identity. Since
the value of r is known, it will not be added in the hash and the generator will produce
the two ciphertexts: H(w1)®@C and H(w1®d)®Cord where wl is the value of the
garbling of 0 of the wire wl (B229|1 in our example), d is the common difference
(258B|1 in our example) and the value of C is a garbling that will be explained in few
lines. These two ciphertexts are ordered corresponding to the select bit of wl (which
is 1 in our example, hence we reverse the order of these two ciphertext). The evalua-
tor can simply evaluate this gate by taking the hash of the garbling of wl (which is wl
or wl@d) and he will get C if r=0, and C or C®d when r=1. We are still free to
choose C, hence we will set C appropriately to make the first row always 0 (similar to
the garbled row reduction technique) by setting C equal to H(wl), H(wl&®d) or
H(wl®d)®d depending on the select bits and the value of r. In our example, r=0 and
the select bit of wl is 1 hence we will choose C=H(w1®d)=H(97A2|0). At evaluation
time, the evaluator will get the value of wl and he will get as output H(97A2|0).

Evaluator half gate

For the evaluator half gate, the evaluator knows the values of ré&wz2 at evaluation time
as it corresponds to the select bit of w2. If ré&w2=0, Bob should always obtain the
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value C corresponding to false (it will be set later as in the previous case). If réw2=0,
Bob should get C or Cé@d depending on the value of wl. But it is enough for him to
get A=C®w1 and then compute A®w1 to obtain the correct value of the output. The
generator will compute the two ciphertexts H(ré&éw2)@C and H(réw2®d)®Cowl.
To further reduce one row we choose C= H(ré®&w2) to zero the first ciphertext. In our
example, r=0, then C=H(27DO0|0) and the ciphertext is therefore H(025B|1)
@H(27D0]0)®B229|1. At evaluation time,

o if Bob gets the value 27D0|0 for w2, he will compute the output of this gate
as H(27D0|0)

e otherwise he will get the value 025BJ|1 for w2, he will hash it and XOR is
with the ciphertext to obtain A=H(27D0|0)®B229|1 that he will further XOR
with the value that he got for wl to obtain either H(27DO0|0) or
H(27D0J0)®258B|1.

Finally the evaluator has to perform the XOR of the two previous gate and he will get
either H(97A2|0)@® H(27D0J|0) or H(97A2|0)® H(27D0|0)®258B|1.

In summary, this technique allows to reduce the number of rows of AND gates by re-
placing each AND gate by two specific half gates, each of them requiring one row on-
ly to be evaluated, and one XOR gate, which is essentially free. Furthermore, Zahur et
al. proved that this is optimal under a set of reasonable assumption.

3. Implementations

As we have seen, garbled circuits have seen tremendous theoretical improvements,
both on the communication and computation complexity. We will now see how these
theoretical improvements have also been implemented in programming frameworks
to allow developers to perform secure multi-party computation without deep
knowledge of garbled circuits. We describe some of the main tools that are open
source and publicly downloadable.

Fairplay (2004)

The Fairplay project by Malkhi et al.? is one of the first practical implementations of
garbled circuit. It is a java-based implementation of garbled circuits featuring the
point-and-permute improvement. The main interest of Fairplay is that it can convert a
high level program similar to java to a circuit. The circuit can be a generic one or a
circuit with only binary gates. It can also be used by two parties or more. In terms of
performance, the implementation does not use much optimizations and is thus not
very fast, garbling less than 30 gates per seconds.
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FastGC (2011)

Huang et al.*® proposed FstGC in 2011 as a major improvement over Fairplay. Not
only does FastGC implement the known extensions at that time such as free XOR,
garbled row reduction and Oblivious Transfer Extensions, but it also solves an im-
portant problem of memory exhaustion. Indeed, approaches such as Fairplay were
generating the whole garbled circuit first and then evaluating it. As a result, only
small circuits could be evaluated. FastGC on the contrary has a pipelined generation
and evaluation of the circuit which improves efficiency but also scalability. In terms
of programming framework, FastGC allows users to write their programs using a
combination of high-level and circuit level Java code. This enables the programmers
to perform circuit level optimization but requires them to have good understanding of
Boolean circuits. As a result, FastGC can garble around a hundred thousand gates per
seconds, and can perform a garbled AES encryption is 0.2s.

TinyGarble (2015)

Songhori et al.** proposed TinyGarble, a tool that generates optimized and com-
pressed Boolean circuits. TinyGarble views circuit generation as a logic synthesis
task. Hence TinyGarble focuses primarily on the circuit component of Garbled Cir-
cuits. Hence it naturally accepts inputs as a standard hardware description language.
It also accepts higher level language programs as input as long as they are compatible
with existing high-level synthesis tools. TinyGarble is the most efficient for the cir-
cuit generation part but is more difficult to use by a developer, as the output of Ti-
nyGarble is a netlist (or list of gates) which is further transformed to be used with a
full Garbled Circuit implementation. On top of producing circuits with the most effi-
cient memory footprint to date, TinyGarble also performs just in-time garbling and
can, therefore, securely evaluate the most practical function with a classical proces-
sor.

OblivC (2015)

Zahur and Evans®® developed Obliv-C, which is an extension of the C language
which supports the standard C features as well as extensions for data-oblivious pro-
grams. A typical Obliv-C program consists of three files: a header (.h) file, a classical
. file that takes care of the setup, networking aspects, and so on, and a specific 0oc
file to take care of the private parts of the program. The programmer can therefore
easily develop an application by adding the keyword obliv to the variables that should
remain private and the compiler will take care of implementing garbled circuits and
other techniques such as oblivious RAM to produce a securely evaluate the function.
For the garbled circuits part, Obliv-C includes all the classical optimizations (free
XOR, half gates, OT extensions), and complements them with Oblivious Ram and
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range-tracked integers. Notably, Obliv-C is the only tool in our list which is an exten-
sion of C.

ObliVM (2015)

OblivM, developed by Liu et al.,* is a complete framework for secure multiparty
computation. It is easy to use, based on Java code and supports garbled circuits as
back-end (with the project to support additional protocols such as fully homomorphic
encryption). This back-end part called ObliVM-GC also includes all the aforemen-
tioned optimizations and basically builds on FastGC, improving its performance by a
factor seven (garbling roughly 700 thousand gates per second). On top of this back-
end part, ObliVM includes a compiler that converts the high-level java program to
one or several circuits whose inputs are oblivious memory accesses. ObliVM indeed
also adopts on-the-fly circuit generation. ObliVM includes several application exam-
ples with benchmarking that shows that slowdown between cleartext computation and
secure computation is between one thousand and one million depending on the appli-
cations.

Conclusion

In summary, we presented Yao garbled circuits and the optimization that improve its
performance. With these optimizations, the computation cost goes down from four
pairs of decryption per gate to one decryption only. XOR gates are free to evaluate
(actually at the cost of a traditional XOR only), and AND gates can be reduced to on-
ly two ciphertexts instead of four, their evaluation requiring two hash functions com-
putation and three XORs. We also presented several implementations of garbled cir-
cuits and of complete secure computation frameworks that use garbled circuits as a
backend. The performance of these latest implementations are still lacking compared
to cleartext evaluation but they are several order of magnitudes more efficient than in-
itial implementation. The last three tools that we presented are very recent showing
that this area is a hot topic in the security community, both on the theoretical and im-
plementation side. For instance, on the theoretical side, Wang and Malluhi'” showed
how to reduce the number of ciphertexts per AND gate even further by relaxing the
assumptions of Zahur et al.*?

Furthermore, note that we only presented garbled circuit as a two party protocol but it
can also be instantiated in many different ways. For example, if only one party has
secret input, garbled circuits can be used for secure delegation of computation®®. It is
also possible to implement garbled circuits with a semi-honest third party that per-
forms the garbling®®. That enables for example, to verify the consistency of secret in-
put across several executions®,
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