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Abstract: Social network analysis has often been applied to the communications 

within criminal groups to understand their internal structure and dynamics. While ac-

cess to the content of communications may be restricted by constitutional and proce-

dural constraints, this article applies advanced network analysis techniques based on 

spectral embedding to telephone communications data. Spectral embedding facilitates 

deeper analysis by embedding the graph representing a social network in a geometric 

space such that Euclidean distance reflects pairwise node dissimilarity. This enables 

drawing a network in ways that accurately reflect the structure of the underlying group, 

and computing properties directly from the embedding. We illustrate spectral ap-

proaches for two Ndrangheta drug-smuggling networks, and extend them to a) 

examine triad structure (through the identification of the Simmelian backbone), which 

elicits key members, and b) to display temporal properties, which illustrates changing 

group structure. The results show that the two groups, although having the same pur-

pose and coming from the same criminal milieu, have substantially different internal 

structure which was not detectable using conventional social-network approaches. The 

techniques presented in this study may support law enforcement in the early stages of 

an investigation. 

Keywords: Organised crime, Italian Mafia, social network analysis, Simmelian 

backbone, network evolution 

 

Introduction 

In the last decade, law enforcement agencies have increasingly applied network 

analysis methods, often available in intelligence software such as I2’s Analyst or 

Palantir Technologies’ Palantir.
1
 In the field of criminal justice, network analysis of 

criminal groups has always been associated with the idea of identifying the most 

important individuals in a criminal network.
2
 

However, application of network analysis is limited because the interception of per-

sonal communications is restricted by constitutional and procedural guarantees. Law 

enforcement, counterterrorism, and counterintelligence can obtain data about the in-

teractions of their targets more easily than data about the content of these interactions. 
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Data about which telephones called which others, which people met one another, or 

which email addresses communicated with other email addresses can often be ob-

tained without a warrant; and such data are therefore of interest in the early phases of 

an investigation when it may not be clear who the members of some criminal, terror-

ist, or espionage group are. Also, intelligence agencies may use these data to identify 

key individuals and contacts to gather important information. Furthermore, such data 

are often preserved for some time, so that retroactive data are often available. 

Visualising group structure through spectral embedding 

There are many ways to understand a social network, for example from properties 

such as diameter, centrality measures, average path lengths, and community structure. 

One way that plays to human strengths is to visualise the network. In this paper, we 

show the extent to which visualisations based on spectral embedding are able to 

display the structure of groups and subgroups based on the superficial data about 

interactions between pairs. This is not novel, but it is underutilised. Our results may 

encourage others to further use this approach. 

In the real world, two individuals form a connection which, if repeated, becomes a 

relationship; and it is natural to consider the strength of a relationship in terms of, for 

example, how much the two individuals communicate. This relationship can be 

represented using a node for each individual and a weighted edge to represent the 

existence and strength of the relationship between them. The social network of a 

group is the collection of all of these nodes and edges into a graph. The benefit of 

social network analysis is that non-obvious structures of the graph are emergent from 

the local, pairwise relationships that formed it. 

Properties of the graph such as the average node degree, the diameter, and the be-

tweenness centrality of each node provide a qualitative view of a given social net-

work, but they are perhaps more useful for comparing social networks to one another 

rather than understanding a particular network. Computing such properties of a graph 

is often expensive, and a single change in the graph can completely change these 

global properties, requiring expensive recomputation.  

One useful way to understand a network is to visualise (draw) it. Most graphs do not 

have a trivial two-dimensional visualisation, let alone one that accurately reflects their 

structures in the most obvious way. Drawing a graph in a way that accurately displays 

its essential structure is a difficult problem. Most techniques to do this are based on 

placing well-connected nodes centrally, connecting nodes with elastic edges that 

reflect the strengths of the pairwise connections between them, and then relaxing this 

structure until it reaches stability. This is reasonably effective, but long-range or 

global structure is captured only by the transitivity of the pairwise connections. 

Spectral embedding addresses both of these drawbacks, at the expense of more 

complex mathematics. Any graph can be represented by an adjacency matrix. If the 

graph has n nodes, this is an n × n matrix where the ij-th entry represents the weight 
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associated with the edge connecting nodes i and j. If there is no connection, then the 

corresponding entry is 0. 

An n × n matrix has a natural representation in n˗1 dimensional space by placing each 

node at the point whose coordinates are given by the corresponding row of the 

matrix. A spectral embedding, intuitively, rotates this space to find the k directions 

from which the graph structures are most visible, and then projects the embedding 

into these k dimensions. The mathematical procedure that discovers these interesting 

directions is called eigendecomposition. 

Obviously, removing some dimensions produces a representation that does not cap-

ture the full richness of the graph. However, the effect of eigendecomposition and 

projection is to place nodes at positions that reflect the global relationships between 

them. It is also the most faithful representation possible in the k dimensions selected.
3
 

In particular, nodes that are close together in the embedding are those that are most 

similar in the social network. Similar nodes are not necessarily strongly connected to 

one another; rather, similarity means that the view of the rest of the network from 

each is approximately the same. Thus similarity can signal that the nodes play the 

same role in the network. 

A spectral embedding derived from an adjacency matrix suffers from a serious draw-

back: when a node has many connections, its row of the adjacency matrix contains 

many non-zero entries, and so it is embedded far from the centre in the n˗1 dimen-

sional space, and so in almost all projections from it. Conversely, a node with few 

connections will be placed close to the centre. This is exactly the opposite of what a 

natural visualisation of a social network should do. 

The solution is to convert the adjacency matrix to a Laplacian matrix, using a simple 

transformation.
4
 A Laplacian matrix is a kind of normalisation of an adjacency ma-

trix, turning the graph “inside out” so that projections will place well-connected 

nodes towards the centre, and poorly connected nodes towards the periphery. 

In an embedding, a pair of nodes is placed close to one another if they are similar to 

one another, even if they are not directly connected. Other social-network analysis 

measures can be approximated directly in the geometry of the embedding, rather than 

being computed over paths in the graph itself. Nodes that are connected to other well-

connected nodes (often those that are most important or significant in the network) 

tend to be embedded close to the centre. Nodes that are fairly well connected to one 

another, but not so well connected to the important nodes tend to be embedded close 

to one another but not so close to the centre, and so appear as “arms” extending from 

the centre. Distance from the centre is therefore a surrogate for overall group im-

portance (the more central the more important); and direction from the centre 

distinguishes subgroups from one another. Thus, a visualisation can reveal how many 

subgroups exist, how they are related to one another, and can give some sense of their 

relative importance. 
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Finding the significant members through Simmelian backbones 

A major challenge that analysts face is how to identify the most important individuals 

in a social network. In a law enforcement or counterterrorism setting, these individu-

als provide the greatest reward for focused attention. For example, warranted inter-

ception could then be used to obtain the content of their communications. For this 

goal, classic visualisation techniques are somewhat limited and may require a deeper 

analysis of the social network. We propose a new approach, leveraging derived net-

works based on triangle participation, called Simmelian backbones. 

The notion of the importance of each individual provided by a visualisation of an 

entire group (how close to the centre they are embedded) can give a useful—but still 

superficial—impression of where the power in a group lies. For example, an 

individual’s only strong connection may be to one of the important members, and so 

their node may be placed quite close to the centre. Interpreting the significance of 

such a person is difficult: on the one hand, he may simply be a close friend or relative 

of the important member, but otherwise insignificant; on the other hand, he may be an 

éminence gris, who is extremely significant but deliberately concealing it by using 

someone else as a front. Not everyone who is placed close to the centre is equally 

significant. On the other hand, not everyone who is placed farther from the centre is 

insignificant. Such an individual may have few connections, but may act as liaison 

between other significant subgroups. 

Simmelian backbones are based on the intuition that triads are a critical structure for 

cohesion in human relationships, an idea that can be traced back to Georg Simmel, 

although his view of triads was quite negative. The significance of triads has received 

new life from studies of businesses showing that the presence of triads is a strong sig-

nal of business health.
5
 Triads, and their instantiation as triangles in social networks, 

have two functional strengths. First, a triangle guarantees two paths between each pair 

of its members, providing some resilience to communication. Second, each partici-

pant can mediate disputes that may occur between the other two, providing a measure 

of robustness in the presence of human behaviour. Triangles appear naturally in 

social settings as one person introduces two of his/her acquaintances to one another. 

Empirical work in social networks has shown that a network with n nodes normally 

contains n
1.6

 triangles.
6
 This is a substantial number: a social network with 1000 

members is expected to contain more than 60,000 triangles. 

Everyone would agree that not every edge is of equal importance, but the subtler 

point is that not every edge of equal weight is of equal importance, as the examples 

above show. To address H2, we construct a new graph, called the Simmelian back-

bone,
7
 from a given social network. The nodes of the new network are the nodes of 

the original network. For each edge of the original graph, we compute how many tri-

angles it is part of. If this number exceeds some given threshold, m, we add an edge 

to the new network between the same pair of nodes, but with its edge weight given by 

the triangle count. Nodes that are not connected in the new graph are discarded. For 

example, if a node is connected to the rest of the original social network by a single 
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edge, then that edge cannot be part of any triangle, and so neither the edge nor the 

node will appear in the new graph. The new graph (Simmelian backbone graph) con-

tains only those nodes and edges that were robustly connected in the original social 

network. 

The process of creating a triangle in a social network has costs, since an individual 

who introduces two of his neighbours to one another puts his reputation at stake, and 

exhibits a certain level of trust (for example, that they will not exclude him from 

ongoing relationship benefits). It also requires giving up some human capital since he 

is no longer required as middleman if the two neighbours can benefit one another.
8
 

Social networks grow because of new pairwise relationships established between 

individuals, and shrink when such relationships atrophy. In criminal, terrorist, and 

intelligence networks, a countervailing force is in play: individuals must consider the 

impact of their new connections on the security of the network (e.g. its resilience to 

communication interception or arrest). This has been called the security versus 

efficiency tradeoff.
9
  

In a criminal network, individuals may have low levels of trust, and may wish to 

hoard the human capital that their connections represent. On the other hand, research-

ers have argued that criminal organisations, including mafias, must reflect the proper-

ties of markets.
10

 The individuals in a criminal organisation may find themselves 

pulled between an instinct not to share connections and the needs of the larger organi-

sation that requires cooperation. This suggests that the following hypothesis is worth 

investigating. 

H1: In criminal networks, there will be many fewer triangles than in typical so-
cial networks. 

If triangles are signals of robust communication and cooperation, then areas of the 

social network that are rich in triangles should reflect individuals who are crucial to 

group operations, either because they carry out an essential function or because they 

manage the group. In an ordinary social network, there are so many triangles that 

varying density of triangle participation may be a weak signal. However, if H1 is sup-

ported, it is plausible that triangle participation in criminal networks is a much strong-

er signal. This suggests that the following hypothesis H2 is also worth investigating. 

H2: Regions of criminal social networks in which edges (relationships) are part 
of many triangles will be those that are critical to the management and 
operation of the criminal group. 

If H2 is supported, it immediately suggests a new strategy for finding the most im-

portant or significant members of a social network, and so it has direct payoff for law 

enforcement and intelligence analysts. 

The Simmelian backbone graph can be embedded using exactly the same spectral 

techniques, providing a visualisation of the core of a group – those nodes (and edges) 

that are well-connected, in a triad sense, to others. This enables us to evaluate H2 by 
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comparing the Simmelian backbone of a criminal organisation to its command and 

control structure derived from exogenous knowledge – in this case, from information 

gleaned by law enforcement from the content of intercepted communications and 

meetings. 

Exploring evolution through time  

Most social networks evolve over time, as members come and go, and as the strength 

of connections between pairs of members change. Tracking these changes can reveal 

the dynamics of a social network, both external, as it reacts to the stresses of its ac-

tivities, and internal – as members interact with one another. For example, Morselli 

and Petit showed how a criminal network evolves when under constant pressure by 

law enforcement agencies.
11

 The network decentralises and the authority of the most 

central node (the leader) is increasingly questioned by other participants, with other 

subjects gaining more central positions. More recent analysis of the same network 

using spectral techniques was able to show not only how relationships changed, but 

which participants were driving these changes. 

It is possible to embed the graphs representing the social networks at different times 

(using the techniques of the previous section), but this does not allow comparisons 

across time, since how the geometry in which each graph is embedded depends on the 

structure of the graph itself. Thus, each network is embedded in a geometry that is 

incomparable with the others. To enable comparisons across time, it is necessary to 

form the graphs from different time periods into a single monolithic graph, by con-

necting the versions of each node together with added edges. The result is a network 

in which the snapshot of the social network over each time period is represented by a 

‘layer’ and the layers are connected together by edges that join the versions of the 

same individual at different times. The weights on these added edges can be chosen in 

a principled way.
12

 

The resulting embedding contains embeddings of each of the subnetworks from each 

time period, but also allows the trajectory of individuals or groups to be tracked 

across time in a consistent way. Thus, it becomes possible to infer that, say, two indi-

viduals are becoming more similar with time, or that one subgroup is moving away 

from another. 

Methods 

Two datasets derived from the judicial documents of two investigations (called 

Operation Chalonero and Operation Stupor Mundi) of two drug trafficking groups, 

which were part of the ‘Ndrangheta, were used. The ‘Ndrangheta is a mafia organisa-

tion that originated in Calabria, in Italy, in the 19
th

 century and recently expanded 

across Italian regions and into other countries such as Germany, Canada, and Aus-

tralia. It is divided into groups called ‘ndrine whose members tend to come from a 

geographically limited region and are supported by a strong internal culture.
13
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Operation Chalonero lasted for several years until arrests in 2007, but the data used 

here covers the period from August 2003 to June 2004. The targeted group brought 

cocaine from South America to Italy via Spain. 

Operation Stupor Mundi lasted for nearly five years ending in 2007, while the data 

used here covers the period from June 2002 to April 2004. This group also imported 

cocaine from South America to Italy but via both Spain and The Netherlands. 

A great deal of information about the operation of these groups was known to investi-

gators because they had access to the content of telephone conversations (and, in fact, 

meetings as well). It was therefore clear who the most powerful members of the group 

were, and how influence was wielded. To demonstrate the power of spectral methods, 

and their applicability at earlier stages of a criminal investigation, we use this data in 

a more limited way: we assume only access to the fact of telephone communication. 

We then consider the extent to which it is possible to recreate the significant structure 

of the group from only such superficial data, and then validate these structures using 

information from the law enforcement investigations. These datasets have been previ-

ously analysed, but primarily to address the question of whether functional structures 

in these networks match the hierarchical structure that would be expected in an 

‘Ndrangheta organisation, and whether network positioning impacts the judicial 

outcome of the case.
14

 

From the data about phone calls between individuals, we construct an adjacency 

matrix (reflecting the social network). We then convert this into a Laplacian matrix, 

carry out an eigendecomposition, and visualise the resulting embedding of each net-

work. For both networks we show the trajectories of some significant group members 

over time. 

To investigate H1, we compute the number of triangles present in each of these net-

works and compare that to the expected number in a social network of the same size. 

To investigate H2, we construct the Simmelian backbones of each of these networks, 

and determine how well they overlap with the key membership and relationships 

known from other aspects of the law enforcement investigation. 

Results 

Chalonero 

Overall Structure 

Figure 1 shows the embedding of the group (of size 66) based on telephone calls. 

There is a dense central core with four separate subgroups: a substantial one down 

and to the left, one up and to the right, a small one to the left, and a few similar 

individuals to the right. The edges from one group to another indicate when there is a 

cross-group connection, but there are only a few of them. This macroscopic view 

identifies the major subgroups within the social network, but it can be misleading to 

the human viewer because the visualisation tends to emphasise the extremal groups, 

and the extremal members within them. For example, N54 is the least important 

member of the group that extends up and to the right. 
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Figure 1: Embedding of the Chalonero social network derived from telephone calls (box 

shows region zoomed in in next figure). 

Figure 2 zooms in to the centre of this embedding, and shows details of the structure 

involving the important group members. Since, in an embedding, proximity is a 

surrogate for similarity for all pairs of nodes, the edges are omitted from this version. 

The alignment in this figure is the same as in Figure 1. Thus N86 is the most im-

portant member of the group extending down and to the left in Figure 1, and the 

group between N2 and N87 is the most important part of the group extending up and 

to the right (and this is clearly the largest and most important subgroup). The remain-

ing groups have no members central enough to appear in this figure. N21, N83, and 

N86 are a small independent group that is obscured in Figure 1. 

 

Figure 2: Zoomed-in centre of the embedding of the Chalonero social network derived from 

telephone calls. 
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Core group 

In an ordinary social network of size 66, the expected number of triangles is 815. The 

actual number of triangles in the network is 68, i.e. about 8 percent of the predicted 

number. This is not unexpected, but it is striking.  

The degree, betweenness, and number of triangles that well-connected individuals 

participate in are shown in Table 1, sorted in decreasing order of triangle participa-

tion. There is clearly some correlation between degree and triangle participation, but 

there are some striking differences in rankings derived from the two properties. For 

example, N45 participates in more triangles than his degree would indicate (so he 

communicates less frequently but to well-connected people); there is a difference of a 

factor of two between N24 and N51’s telephone calls, but they are connected to the 

same number of well-connected people. 

Figure 3 shows the embedding of the social network determined by those edges that 

participate in more than 1 triangle: the Simmelian backbone with a threshold of 1. 

This embedding captures all of the significant group members, and makes their 

relationships clear. Indeed, nearly all the key individuals in the drug trafficking 

Table 1: Total edge weight and triangle participation for important nodes in the Cha-

lonero dataset. Degree and betweenness centrality are expressed as fractions of 

the maximum possible value for the network (and so do not sum to 1). 

Node ID No. of triangles Degree Betweenness 

2 19 0.569 0.874 

47 8 0.185 0.166 

45 5 0.077 0.009 

23 4 0.169 0.207 

24 3 0.092 0.088 

21 3 0.077 0.035 

50 3 0.062 0.017 

51 3 0.046 0.000 

57 2 0.046 0.013 

15 2 0.046 0.000 

87 2 0.046 0.000 

Min (out of 66 nodes) 0 0.015 0.000 

Max (out of 66 nodes) 19 0.569 0.874 

Mean (out of 66 nodes) 1.03 0.041 0.026 

St. Dev(out of 66 nodes) 2.63 0.074 0.113 
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network (i.e. N1, N2, N23, N24, N45, and N47) are included in the Simmelian 

backbone. N1 is not included but it is clear why – he was a fugitive at the time and 

did not participate to phone conversations to avoid detection. 

 

Figure 3: Simmelian backbone for the Chalonero dataset with threshold 2 (known important 

individuals are indicated by filled hexagons). 

Evolution through time 

Figure 4 shows the embedding of the overall graph obtained by binding together 11 

subgraphs representing the social networks during successive month-long time 

periods, based on telephone calls. The figure shows the trajectories of the five 

individuals (N2, N23, N24, N45, and N47) known to be most important from the 

police investigation, with each trajectory shown in a different colour. The labels are 

the time periods concerned. 

 

Figure 4: Trajectories of important nodes over time (Chalonero dataset. N2: black, N23: blue, 

N24: red, N45: cyan, N47: magenta; points labelled with time step). 
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N47 remains at the left-hand side of the figure but moves away from the centre over 

time, while N45 remains at the right-hand side but moves towards to centre over 

time. These two individuals were traffickers connected with powerful ‘Ndrangheta 

families who got involved in the drug trafficking operations of Chalonero. Their posi-

tion follows the different consignments and deals they were involved in. N24 is 

initially towards the left but gradually moves right; N23 moves in a similar way. 

These were two brothers. N23 lived in Bolivia with the purpose of providing oppor-

tunities for smuggling cocaine to Italy. N24 mostly lived in Calabria and was the 

main reference for the brother. N2 can be seen moving around the centre of the em-

bedding in a circular way, a vivid demonstration of virtual “managing by wandering 

around.” Indeed, N2 was the key trafficker in Chalonero, managing different 

operations with all the above mentioned partners. This temporal view gives some 

insight into changing power relationships with time. 

Stupor Mundi 

We now repeat the analysis for the group that was the target of the Stupor Mundi 

operation. This group is about the same size as the one targeted by Chalonero. 

Overall structure 

Figure 5 shows the structure of the group that was the target of the Stupor Mundi 

operation based on telephone calls among 65 individuals. There is a clear central core 

running from top left to bottom right, with two other subgroups, one to the right and 

one to the left, both reasonably well connected into the more central groups. As 

before, this view reveals the macroscopic group structure but can be misleading about 

which individuals are significant. 

Figure 6 shows a zoomed in version of the same figure, with the same orientation. 

These are the best-connected members of the group, again shown without graph 

edges since proximity corresponds directly to similarity. This figure shows that the 

central structure is quite different to the extremal groups that are visible in Figure 5. 

 

Figure 5: Embedding of the Stupor Mundi social network derived from telephone calls. 
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Figure 6: Zoomed-in centre of the embedding of the Stupor Mundi social network derived 

from telephone calls (the region covered is the dense region just below 43 in figure 5). 

Core group 

In a network of size 65, the expected number of triangles is 796. The actual number 

of triangles in the network is 311, slightly less than half the expected number. This il-

lustrates a substantial difference between this group and the previous one – the Stupor 

Mundi target organisation is much more richly connected. 

The structure of the group derived from triangles is helpful in explicating the centre 

of this organisation. Table 2 shows the distribution of degrees, betweenness and 

triangles for the best-connected nodes, in decreasing order of triangle participation. In 

Stupor Mundi, the key individuals were N23, N24, N35, N38, and N46. Three of the 

most important nodes (N38, N23, and N35) appear at the top of the list based on 

triangle participation. N26 did not play a crucial role in the drug trafficking activities, 

but was a well-respected senior member of the ‘Ndrangheta. His importance emerges 

more from triangle participation than from telephone communications, as he would 

have been ranked 8
th

 on the basis of phone calls, but is ranked 5
th

 on the basis of 

triangle participation. A number of other individuals are ranked much more highly on 

the basis of their phone calls than their triangle participation would indicate, notably 

N19 and N5. 

N46 is an interesting case. He was the leader of an ‘Ndrangheta family, and generally 

supervised most operations conducted by the Stupor Mundi network. However, he 

purposely remained far from the operational management criminal activities, provid-

ing financial resources and dispute settlement instead.
15

 He would have ranked 19
th

 

on the basis of phone calls, but moves up to 12
th

 when triangle participation is 

included. 

Figure 7 shows the core group derived by embedding the graph formed from the 

edges that appear in more than 5 triangles. This core structure contains all of the   
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Table 2: Total edge weight and triangle participation for important nodes in the 

Stupor Mundi dataset (See Table 1 for definitions). 

Node ID No. of triangles Degree Betweenness 

N38 57 0.609 0.554 

N23 39 0.406 0.348 

N35 32 0.281 0.128 

N28 19 0.156 0.045 

N26 16 0.125 0.008 

N24 15 0.172 0.063 

N19 12 0.109 0.018 

N3 11 0.109 0.021 

N25 8 0.109 0.034 

N34 8 0.094 0.013 

N46 8 0.078 0.002 

N13 8 0.078 0.001 

N18 6 0.078 0.007 

N17 6 0.063 0.000 

N36 6 0.063 0.000 

N5 5 0.078 0.013 

N32 5 0.078 0.008 

N48 4 0.078 0.037 

N49 4 0.078 0.032 

N31 4 0.063 0.007 

Min (out of 66 nodes) 0 0.016 0.000 

Max (out of 66 nodes) 57 0.609 0.554 

Mean (out of 66 nodes) 4.79 0.066 0.023 

St. Dev(out of 66 nodes) 9.57 0.093 0.081 

 

important nodes (except N46 for the obvious reasons). This network is much more 

robustly connected than the Chalonero one, and so a much higher threshold is needed 

to reveal the core structure. 

Evolution through time 

Figure 8 shows the embedding of the overall graph obtained by binding together 13 

subgraphs representing the social networks during successive 4-month time periods, 
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Figure 7: Simmelian backbone for the Stupor Mundi dataset with threshold 5 (known 

important individuals are indicated by filled hexagons). 

based on telephone calls. The figure shows the trajectories of the five individuals 

(N23, N24, N35, N38, and N46) known to be most important from the police 

investigation, with each trajectory shown in a different colour. The labels are the time 

periods concerned. 

 

Figure 8: Trajectories of important nodes over time (Stupor Mundi dataset. N23: black, N24: 

red, N35: blue, N38: cyan; N46: magenta. Points labelled with time step, 4-month 

intervals starting in June 2002). 

The three figures N24, N35, and N38 remain closely associated throughout the entire 

time sequence, although there is a slight trend towards the right in the figure. N23 is 

not closely coupled with these three, but also shows little variability over the entire 

time sequence. N46 changes connectivity to the rest of the network much more 



Francesco Calderoni, David Skillicorn, and Quan Zheng 

 

 

63 

significantly, although not in ways that relate to these other core members. He is 

trying to stay aloof from the rest of the network, and so stays far from the core group, 

but interacts with other parts of the network (that are not shown in the figure) – 

another instance of managing by wandering around.  

Discussion and conclusions 

This paper analysed two criminal networks focusing exclusively on the traffic data of 

intercepted telephone calls. The results suggest that the analysis of these metadata can 

provide interesting insight on the structure and the functioning of a criminal organisa-

tion independently of the content of the conversations. This may be relevant for law 

enforcement, counterterrorism, and counterintelligence, which may apply network 

analysis methods for early identification of the group structure, of significant indi-

viduals, and understanding the evolution of the group structure.  

Spectral embedding provides a way to examine the global structure of a graph by em-

bedding it in a geometry that preserves the relationships and is as well possible in a 

space of a given dimensionality. This is a useful way to find the groups within a so-

cial network: a central subgroup reveals itself as a cluster close to the centre, while 

other groups appear as radial arms that may or may not be well connected to the cen-

tre. These particular criminal groups have strong central clusters as well as smaller, 

less connected clusters, sometimes driven by functional needs such as product acqui-

sition. 

While spectral embedding is useful for identifying subgroups, it is less useful for 

identifying individuals who play a significant role in the social network. That is 

because the node representing an individual is placed approximately in the centre of 

the points to which it is connected, weighted by the strength of those connections 

(and distorted by the need to represent a high-dimensional structure in only a few di-

mensions). Hence, a node whose role is to act as a bridge between subgroups may not 

stand out because it is positioned away from both of them. This illustrates a signifi-

cant weakness of eigenvector centrality. Thus, visualisation does not completely solve 

the problem of finding the most significant members of a group. We have argued that 

participation in triads, and so in triangles in the social network, is a strong signal of 

functional or management importance, and have created embeddings of Simmelian 

backbones to find such signals. 

Hypothesis H1 is that there will be fewer triangles in criminal networks than are ex-

pected to be present in more conventional social networks. This is strongly supported 

from this data. The number of triangles present is much smaller than would be ex-

pected for a social network of corresponding size, supporting the idea that criminal 

networks do not have the same levels of trust as typical social networks. The models 

of Logan et al.
16

 suggest that criminal organisations are, partly for this reason, quite 

dysfunctional. Hence it is reasonable to assume that localised participation in trian-

gles is quite a strong structural signal in a criminal social network. 
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Hypothesis H2 is that those individuals, who do participate in many triangles, are 

likely to be the significant members of a criminal group. This is also strongly sup-

ported. The construction of the Simmelian backbone of a criminal network has been 

shown to discover almost all of the key members of each of these groups. The 

exceptions are cases where the individual has explicitly worked to remain decoupled 

from the social network as much as possible. Thus, the use of Simmelian backbones 

has considerable potential to examine a large social network to find those parts that 

represent a kind of core group: those who trust each other, or work together coopera-

tively far more than typical members. In other words, degree is not sufficient to 

establish importance: whom a person communicates with is as important as how often 

they communicate. This is an immediately actionable result: law enforcement and 

intelligence analysts can use this approach to reliably identify those who are critical 

members of a criminal social network. 

The surprising result of this analysis is how different the two groups are. They are 

superficially very similar—from the same cultural and criminal milieu, of a similar 

size and with similar distributions of centrality measures—but the triangle structure 

reveals that they are very different inside. The group targeted by Stupor Mundi has a 

much greater fraction of triangles among its members than Chalonero; as a result, a 

much greater threshold is required to produce a Simmelian backbone of comparable 

size. This much more robust connection structure makes this group much more re-

sistant to disruption by the arrests of a few members. Previous analyses on the two 

groups based on more traditional network analysis measures and content analysis of 

conversations were not able to capture this structural difference between the two 

organisations. This suggests that the exploration of the topology of a criminal net-

work, in addition to overall network-level and node-level metrics, should include also 

analysis of the network at intermediate scale. 
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