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MODELING IN SHAPED CHARGE DESIGN 

Hristo HRISTOV 

he efficient development of scientific programs dealing with studies of reliability 

of the body lining of a spacecraft, as well as the quality of the results being 

obtained, depends to a great extent on the operational parameters of the shaped 

charges, their killing characteristics in particular, which are used to form jet particles. 

An integral parameter for assessment of the efficiency of the shaped charge is the 

length of the shaped jet. 

It is known that the characteristics of the shaped jet, and its length in particular, 

depend on the geometry of the shaped charge. The influence of this factor will be 

analyzed shortly.
1
 The solution of the task is satisfied within the hypothesis of the 

radial-flat scheme of the hydrodynamic model of Orlenko-Stanukovitch (See Figure 

1). In the Cartesian co-ordinate system z0y the following equations of the generating 

line of the surfaces of the basic details of the shaped charge with height H are 

determined: y1 = F(z), y2 = (z), y3 = (z), and y4 = f(z). They describe the external 

and internal surface of the body, and the external and internal surface of the lining of 

the shaped charge, respectively. The following constraints are imposed on the 

functions just listed -- they are continuous and have continuous first derivatives. 

Furthermore, the following conditions are always fulfilled: 

   F(z)  (z)  (z)  f(z);      H  0; y  0. (1) 

The front of the detonation wave is flat and perpendicular to the polar axis of the 

shaped charge in its movement into the weight of the charge from left to right. There 

are no constraints on the permissible boundary deformations of the jet material. 

Let us assume that the collapse velocity of the lining Wo(z) does not depend on time 

and it is a function only of the z coordinate.
2
 Wo(z) is related to the launch velocity of 

the shaped jet W1(z) in the cross-section that is examined by means of the kinematics 

relation:
3
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Figure 1: Radial-flat scheme of Orlenko-Staniukovitch for deformation and collapse of the 

lining of the shaped charge and formation of the jet. 
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where:  

ki  is coefficient which gives the reading of redistribution of the impulse of 

the explosion according to the height 

    of the shaped lining;  

D is a velocity of detonation of the explosive; 

(z) is an explosive load coefficient; 

(z) is an angle of collapse of the lining. 

 

The complete collapse of the lining is performed for a period of time t = H/D. The 

elementary fraction of the lining with a coordinate z and a length dz occupies a spatial 

position which is limited by the coordinates y(z) and y(z+dz), and taking into account 

the geometry of the charge and the kinematics of the elementary fraction of the lining, 

we obtain: 
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For 
2


tg  we have the following quadratic equation:
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And according to the physics of the process, the solution is the root 
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If we integrate (2) from 0 to H we shall obtain the complete length of the shaped jet at 

the moment of completion of its formation: 
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where BH  is a known function of the load coefficient at z=H: 
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Expression (3) is an initial expression that can be used to determine the extremum of 

the functional: 
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where: 

L  is a specified function; 

0 and H are specified boundaries of integration; 

 = (z) is a variable function of the geometry of the charge (e.g. external or 

internal surface of the body, the charge or the lining). 

 

The function  = (z) that is sought, is a solution of the boundary task with boundary 

values for a conventional Euler-LaGrange differential equation of the type: 
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and specified boundary conditions: 

 0)0(   ;     HH  )( . (5) 

For real designs with a cylindrical body and a shaped lining with a constant thickness 

an additional integral condition can be used that provides optimum conditions for 

formation of the shaped jet
5
 where the variable function is the profile of the lining: 
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Here, K is a specified parameter. According to some authors
6
 values for lining made 

of steel, aluminum and copper are equal to КSt=0,231; КAl=0,268; KCu=0,364, 

respectively. 

As a result we obtain a task with a conditional integral extremum that is equal to the 

task of an unconditional extremim of the expression: 
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where  is an unknown constant multiplier of LaGrange.
7
 

The task is reduced to the determination of the solution of the Euler equation for the 

modified function: 
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The function f = f(z) that was sought is a solution of the boundary task with two (one) 

no-move values for a conventional differential equation of Euler-LaGrange: 

 0****   fLfLLL fffffzf  (9) 

and specified boundary conditions: 

 f(0)=f0;        f(H)=fH. (10) 
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The two integration constants and the LaGrange multiplier are determined by the 

three conditions -- two boundary and one additional condition. 

The solution of the task is a set of straight lines that are parallel to the straight-line 

profile of the body (a cylinder or a cone) and depend on the specified boundary 

conditions. Figure 2 illustrates the solutions. 

The solutions have a physical meaning. In all solution cases the angle of collapse and 

the load coefficient along the shaped charge are constants. The angle of collapse is 

minimum and is formed as a result of the delay of the front of the detonation wave 

that, in turn, provides the high launching velocity of the jet and its maximum length. 

 

  

 

Figure 2: Solutions in case of: a) cylindrical body profile; b) conical body profile. 
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