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Introduction 

Due to the uncertainties inherent in military operations and the variations in human 

personalities, military command and control behavior rarely conforms strictly to 

doctrine. (Of course, the degree of conformity to doctrine may vary.) In a military 

simulation with automated commanders, models of command behavior and decision-

making that follow doctrine precisely and exhibit no variations are therefore 

unrealistic. Automated commanders that exhibit doctrinal behavior are essential for 

training, especially at the introductory levels, but are not sufficient for the full range 

of purposes the simulation may be applied to, such as advanced training and mission 

rehearsal. Simulation users may seek an automated commander that realistically 

models the effects of the fog of war and the difficulty of making doctrinal decisions 

under stressful conditions. Such realism in simulation could better prepare trainees 

for expected encounters on the battlefield. 

To achieve this end, the realistic modeling of human behavior has become a 

pervasive topic in the modeling and simulation community. How does one go about 

representing realistic human behavior? Some psychologists have looked to 

personality traits to characterize behavior. Different humans behave differently in the 

same situation, depending on their personalities. Commander personality has a 

significant effect on command decision-making, so modeling personality and its 

effects on command could improve simulation realism. For some applications, 

realistic command simulation may require a representation of personality. 
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We have implemented and tested a simulation that incorporates a trait-based model of 

human personality into the decision-making of a simulated commander. The model 

was implemented and used in an experiment intended to test its utility in producing 

more realistic human decision-making in a way that could be validated by personality 

and performance measurements of real human commanders. The simulation models a 

decision-making scenario where a commander must dispatch and route trucks, 

assumed to be loaded with food and medicine, to a refugee camp with urgent 

requirements for the supplies. Land mines have been placed, in numbers that vary by 

road segment, in the road network between the supply depot and the refugee camp. 

The mines will disable a portion of the trucks that attempt to traverse each segment, 

based on mine density. The simulated commander knows the roads are mined but 

does not know the number of mines on the various road segments in the network and 

so must make dispatch and routing decisions in the absence of complete information 

and with the expectation of having trucks disabled. In this scenario, time does not 

permit the mines to be searched for or removed; the only method the commander has 

to learn of the relative danger of different road segments is to route trucks along 

them. The simulation forces the commander to make decisions under the stress of 

conflicting goals; the trucks must reach the refugees quickly, but the road network 

must be explored carefully to determine the least dangerous routes. 

The following sections of this paper cover these topics. The personality traits that are 

the psychological basis of the model of human personality used in the automated 

commander are briefly reviewed. The experimental scenario and simulation of it is 

described. Details of the design of the automated commander, including the 

integration of the trait-based personality model, are given. The results of 

experimental testing of the model are reported. Finally, an alternative set of traits for 

the human personality model, suggested by the results, is provided. 

Personality Traits and Decision-Making 

In the context of military command it is critical to assign the right person to the right 

job and adequately train that person to competence. As military trainers have found, 

training and repetition can train out certain undesirable characteristics of a person’s 

performance. For example, a person with sufficient training in the situation he/she 

faces may exhibit reduced fear and panic response, have better reaction time, and 

make fewer careless mistakes. Unfortunately, when in a stressful or unexpected 

situation, especially one, which a commander’s training has not prepared him/her for, 

the commander’s behavior and decision-making performance may revert to his/her 

innate psychological characteristics. In such circumstances a commander’s individual 

personality is most visible in his/her behavior. For simulations purposes a commander 
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model that accounts for personality would be useful for producing realistic decision-

making behavior from psychological profiles of human decision-makers. 

Models of personality have been considered in the past, but progress has been 

dependent on the existence of appropriate tools for evaluating personality traits in the 

context of military decision-making. The trait-based personality model used in this 

research is based on an extensive investigation of the battlefield behavior of 20
th

-

century infantry
1
 and has been previously suggested for applying a trait-based model 

in simulation.
2
 The model asserts eight distinct personality traits that impact decision-

making. Those personality traits are listed and defined as follows: 

1. Stability.  This is a generic trait that expresses a person’s overall emotional 

stability, rather than a particular emotion. It serves as the “governor” of 

emotional expression, particularly extreme emotions such as panic. 

2. Anxiety.  This trait expresses a person’s inherent fearfulness. 

3. Anger.  Broadly expressing the emotion of anger, this trait also accounts for 

a person’s inherent aggressiveness and resentment. 

4. Humor.  Representing more than a simple sense of humor, this trait also 

expresses a person’s capacity for emotional “bounce-back” and the ability to 

recover from sudden shocks, losses, and other negative impacts on morale. 

5. Acquiescence.  This trait represents a person’s willingness to follow 

commands, orders, and other leaders. 

6. Independence.   This trait expresses the ability of a person to make decisions 

independently, without leadership. 

7. Charisma.  A composite trait that collectively expresses aspects of 

personality that others tend to find attractive. 

8. Knowledge.  This trait replaces the ambiguous term “intelligence” which has 

a particular meaning in military terms. It refers to military knowledge, 

ranging from weapons and equipment to tactics. 

Whereas personality traits are relatively stable characteristics of a person, his/her 

decision-making can also be affected by the more transient condition of psychological 

state. In contrast to traits, states are dependent on the situation and relatively 

temporary. For example, a person may have a consistent predisposition towards anger 

(a trait), but may have that angry disposition overlaid or temporarily displaced by 

tranquility (a state) resulting from an event such as a mission success. In other words, 

a person’s trait-based tendencies can be temporarily counteracted by event-driven 

states. 

The personality model synthesizes the basic psychological notions of personality 

traits and states into composite factors that influence military command decision-
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making; these factors include situational stress (e.g., the friend-to-foe ratio) and 

morale (based on a combination of personality traits, stress, and support). 

Experimental Scenario and Simulation 

An experimental scenario was designed to exercise command decision-making. A 

simulation was implemented to specifically support that scenario. 

Experimental Scenario 

A hypothetical United Nations (UN) peacekeeping and humanitarian assistance force 

has received an extremely urgent request to deliver medical supplies and food to a 

refugee camp in the Balkans. The supplies are needed within the next 12 hours to 

avoid many refugee deaths. Extremely bad weather prevents air transport of the 

supplies. The UN force has assembled a group of trucks at the closest supply depot 

and loaded them with the needed supplies. The trucks must travel to the refugee camp 

as quickly as possible. 

Unfortunately, what would otherwise be a simple route-planning problem is 

complicated by the fact that hostile militia forces have placed land mines throughout 

the road network between the supply depot and the refugee camp. The terrain is 

rugged enough to restrict truck travel to the roads. The exact locations and density of 

the mines are unknown to the UN commander, and there is not sufficient time to 

perform mine search and removal. The mines used by the militia are of a type that if 

hit by a truck will disable the truck but will not kill the UN drivers. The trucks are all 

equipped with radios and global positioning system receivers. The UN commander 

decides to dispatch and route the trucks individually to the refugee camp, controlling 

their movements centrally by radio from the command post, and to adjust later truck’s 

routes based on knowledge of the mine locations learned from the preceding trucks. 

Experimental Simulation 

In the simulation of this scenario, the terrain is represented as an undirected graph, 

with vertices corresponding to road intersections and edges to the roads connecting 

the intersections. Trucks are located at vertices. Trucks move from vertex to vertex 

along edges. The supply depot and refugee camp are both vertices. Figure 1 is an 

example of a terrain graph. 
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Figure 1: Example Terrain Graph. 

Each edge e in the terrain graph has these attributes: 

1. e.time  Time required by a truck to traverse edge e. These values are 

determined by the geographical distance between the connected vertices, the 

average speed of truck movement, and a random increase to reflect specific 

road conditions. 

2. e.pmine   Probability of a truck being disabled by a mine when traversing 

edge e. 

3. e.capacity  Maximum number of trucks that may simultaneously be 

traversing edge e. This capacity limit includes trucks that may become 

disabled on e. 

Each vertex v has these attributes: 

1. v.pmine  Probability of a truck being disabled when moving to vertex v. 

2. v.capacity  Maximum number of trucks that may be located at vertex v. This 

capacity limit includes trucks that may become disabled at v. 

The simulation implementation employs the discrete-event simulation paradigm. The 

movement of a truck from one vertex to another is a simulation event, as is the 

disabling of a truck on an edge or a vertex. When a truck located at vertex vi at 

current time t moves from vertex vi to vj, along edge ek, it arrives at vj at time 

t + ek.time. At time t + (ek.time / 2), ek.pmine is used to determine if the truck is 
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disabled while moving along the edge. If it is disabled, the UN commander is notified 

that the truck was disabled. Otherwise, the truck arrives at vertex vj at time t + ek.time. 

At that time a determination is made using vj.pmine if the truck is disabled at the 

vertex and the UN commander is notified of the truck’s status, either arrived safely or 

disabled at the vertex. Because the effects of a large number of mines are being 

modeled probabilistically, mines are not removed when a truck is disabled, i.e., the 

e.pmine and v.pmine values are not changed at such events. No more trucks may be 

simultaneously located at a vertex vi than its capacity vi.capacity; similarity, no more 

trucks may be traversing an edge ek than its capacity ek.capacity. 

The automated UN commander decides when to dispatch each truck from the supply 

depot. It also decides when each truck reaches a vertex, which connected vertex the 

truck will next move to. At the start of a trial, the UN commander has no knowledge 

of the mine distribution (i.e., of the v.pmine and e.pmine values). Over time, the UN 

commander accumulates an estimate of the pmine values based on the experiences of 

the trucks as they move through the graph. The dispatch and routing decisions are 

made using a decision model, described in the next section that may consider the 

estimated pmine values. 

In addition to the simulation time taken by the trucks’ movements, the automated UN 

commander’s decisions require time. The amount of time per decision is a parameter 

of the commander model. A trial ends when all trucks have either reached the refugee 

camp vertex or been disabled. 

Design of the Automated Commander 

The implementation of automated commander’s decision model essentially consists 

of two parts. The first part of the decision model is a set of graph search algorithms 

that find routes in the terrain graph; they generate alternatives for the commander’s 

basic routing decisions. The routing algorithms differ in terms of whether they seek to 

minimize time, minimize risk of disablement, or minimize some combination of 

those. The second part of the decision model is the trait-based personality model. It 

influences the routing decisions in that it is used to select among the alternatives 

generated by the routing algorithms and may also cause a delayed or degraded 

decision. 

Search Algorithms 

The cost of a route in the terrain graph is a function of the time to traverse it and the 

probability of being disabled on the route. The set of graph search routing algorithms 

used in the automated commanders consider one, or the other, or both of those 

aspects of cost. The routing algorithms are: 
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1. Minimum Time Cost (MTC) 

2. Least Damage (LD) 

3. Least Percent Damage (LPD) 

4. Minimum Time Cost and Least Damage (MTCLD) 

5. Minimum Time Cost and Least Percent Damage (MTCLPD) 

An A* heuristic search algorithm
3,4

 is used to find the minimum time route through 

the road network. The minimum time route may vary over simulation time because 

edges in the network may become unusable when trucks are disabled and block 

further truck traversal on particular edges. The algorithm is executed repeatedly to 

update the minimum time route. This route is used as a standard to measure the 

performance of the search procedures used. The true risk of a route may be calculated 

using the true probabilities of disablement (the e.pmine and v.pmine values), rather 

than the estimates of those values derived from experience as a percentage of trucks 

disabled on the edge or vertex. The true risk of a route may also serve as a 

performance standard. 

The other four routing algorithms consider not only minimum time but also heuristics 

dealing with the estimated probability of disablement on a route, based on the 

quantity or percentage of trucks that have been disabled at each edge or vertex on the 

route. These values will change as the scenario is executed and more trucks are 

disabled. 

Some details of the routing algorithms are now given. They use these parameters: 

#D,  %D,  pD = number, percentage, and probability of trucks disabled, in 

total 

#De,  %De,  pDe = number, percentage, and probability of trucks disabled, on 

edge e 

#Dv,  %Dv,  pDv = number, percentage, and probability of trucks disabled, at 

vertex v 

Minimum Time Cost (MTC). As mentioned earlier, the MTC algorithm uses an A* 

graph search procedure to find the path of least cost (time), which is approximated by 

an evaluation function e(v) that is calculated for each vertex v along the path. The 

evaluation function sums the actual time c(v) required to reach v and the estimated 

cost h(v) of getting from v to the goal vertex. The MTC algorithm uses the time 

required to traverse each edge e.time throughout the network to calculate these costs. 

The evaluation and cost functions for MTC are defined as follows: 
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e(v)MTC = c(v)MTC + h(v)MTC 

 

 

h(v)MTC = d(v) / K 

 

where R is the route the truck has taken so far to vertex v, K is the average truck 

speed, and d(v) = Euclidean distance 22 ba   assuming a and b are the horizontal 

and vertical distances from v to the goal vertex. 

Least Damage (LD). The LD algorithm is focused on reducing risk, not time, on its 

routes; the LD cost function considers only the number of trucks previously disabled 

along a possible route segment (edge and terminating vertex). Movement is directed 

toward the segment with the least number of previously disabled trucks. 

 

c(v)LD = #DE + #DN 

 

Least Percent Damage (LPD). Similar to the LD algorithm in its focus on risk, the 

LPD algorithm’s cost function considers the percentage, rather than the number of 

trucks that have previously been disabled when attempting to traverse a route 

segment. 

 

c(v)LPD = %DE + %DN 

 

Minimum Time Cost and Least Damage (MTCLD). In its cost function, the MTCLD 

algorithm considers both the time and number of trucks disabled for a particular route 

segment. 

 

 



 Frederic D. McKenzie, Mikel D. Petty, and Jean Catanzaro 83 

 

where AP denotes all paths. 

Minimum Time Cost and Least Percentage Damage (MTCLPD). In its cost function, 

the MTCLPD algorithm considers both the time and percentage of trucks disabled for 

a particular route segment. 

 

 

 

 

 

Trait-Based Personality Model 

Within the framework of the five routing algorithms the challenge is to define what 

constitutes normal and sub-optimal decision behavior and establish a link between a 

commander’s personality and the decisions he/she makes. The automated 

commander’s decision model is based on the assumption that a human commander 

would make routing decisions that closely approximate (perhaps in sub-optimal form) 

one of the routing algorithms previously described. Which algorithm would the 

commander use, and whether or not the decision made would be sub-optimal, 

depends on the commander’s personality traits and the current state of the simulation. 

As previously described, the commander’s personality is specified with a set of eight 

personality traits. In general, personality traits determine the predisposition of people 

to exhibit a particular behavior under varying situational conditions. Such trait and 

state effects on decisions are modeled in this research as decision delay and decision 

optimality. For example, stress is a situational condition that may affect the decision-

making performance of a military commander. The personality model causes 

commanders with certain personality traits to make sub-optimal decisions under high 
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stress conditions. Sub-optimal decisions are obtained from evaluating and ranking the 

five search algorithms against a particular scenario. Ranking may also be chosen 

based on qualitative criteria. Delayed decisions are obtained by randomly increasing 

the decision time according to parameters that are part of the commander’s 

personality profile (the term personality profile refers to the collection of the eight 

trait values for a particular commander). 

The decision model design uses the commander’s personality traits and current 

simulation state to calculate the commander’s stress and morale and ultimately his/her 

accuracy and effectiveness. Based on those results, one of the available decision 

actions calculated by the five decision algorithms is selected. The decision selection 

also includes the possibility of a delayed decision (long decision time). 

A user interface in the simulation, shown in Figure 2, is used to enter the parameters 

that connect the commander’s personality to the process of selecting the decision of 

one of the routing algorithms. Via this interface the user enters the effectiveness 

ordering of the routing algorithms, the commander’s reaction time, the commander’s 

obedience and panic parameters, and the accuracy and effectiveness levels associated 

with the routing algorithms. The commander’s personality traits are used to compute 

his/her accuracy and effectiveness in a given situation; then that value is used, based 

on the parameters entered in the last portion of this interface, to select one of the 

routing algorithms’ decisions. Leaders with personalities that make them more 

effective in the current situation will select the decisions of the better algorithms. 

Simulation Experiments 

A series of simulation experiments were conducted to test the integration of the trait-

based personality model into the automated commander and its effectiveness at 

producing realistic decision-making behavior. 

Simulation Environment and Scenario Generation 

The simulation’s user interface allows the user to create and edit terrain graphs. 

Based on user inputs, vertices and edges in a terrain graph may be randomly 

generated and/or manually edited. Similarly, edge and vertex attributes, such as e.time 

and v.pmine, can be generated by the simulation and/or manually edited. Other 

scenario information, such as number of trucks, is also input via the user interface. 

Once generated, terrain graphs and scenario data can be saved. 
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Figure 2: User Interface for Connecting Commander Personality to Decision Algorithms. 

Figure 3 shows an example scenario; the example in the figure is smaller than the 

road networks used for the actual experiments. In the figure the circles represent the 

road intersections (vertices) interconnected with lines that represent the roads (edges). 

The color green (G) and the light lines denote a road or intersection that has been 

traversed without incident, red (R) indicates that at least one truck has been disabled 

on that road or intersection, and blue (B) means that the road or intersection has not 

yet been traversed by any trucks. In the figure the leftmost intersection (a white (W) 

node) is the supply depot and the rightmost intersection (a green (G) circle) is the 

refugee camp. The numbers labeling each edge and vertex indicate the number of 

trucks traversed and disabled. 

In addition to the automated commander, the simulation has interactive capability 

whereby a human operator can make the trucks’ routing decisions. This capability 

provides a mechanism to compare the automated commander’s performance with that 

of human commanders. 
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Figure 3: Example Road Network and Scenario. 

Performance Evaluation Metric 

The long-term goal of this research is to contribute to generating realistic decision-

making behavior by automated commanders in simulations. To assess progress 

towards that goal, the effectiveness and realism of the decisions made by the 

automated commander must be quantitatively measured. The objective is not to 

obtain some mathematically optimum performance level for an automated 

commander, but rather to generate similar decision-making outcomes as would be 

found in human commanders. 

Under the performance metric defined for the scenario, the commander seeks to 

maximize number of trucks arriving at the refugee camp within a given time limit and 

minimization of both the number and the lateness of trucks arriving after the time 

limit. The performance metric is defined as follows: 

 

 

where:   
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N = The number of trucks. 

s = A constant; the time limit given for trucks to arrive at the refugee 

camp. 

di = 1 if truck i arrives within the critical time limit, 0 if it is late. 

ci = 1 if truck i arrives at the refugee camp vertex, 0 if it is disabled. 

ai = The arrival time of truck i at the refugee camp vertex. 

Note that for each truck the quantity cidi will be 0 or 1, the quantity ci(1 - di)(s / ai) 

will be in the range 0 to 1, and only one will be non-zero. The performance of a 

commander will be the sum of N such quantities, divided by N, which will therefore 

be in the range 0 to 1 (inclusive). This normalized measure of performance allows the 

commanders’ performance to be compared for different numbers of trucks and 

different terrains. 

Experimental Results 

A series of experiment trials were performed using typical road network topology 

generated over a given terrain. In preparation for the experiments the five search 

algorithms were executed on the experimental networks in order to determine their 

effectiveness ranking on those networks. 

Figures 4, 5, and 6 compare the performance of the five routing algorithms without 

personality influence. In the figures, the horizontal axis shows time limit and the 

vertical axis shows performance metric values. All three figures illustrate that the 

more time a commander has the better he/she will perform. Figure 4 shows the 

performance of the five algorithms over seven trials with a common road network and 

increasing time limits. For these trials the road network had an equal probability of 

being disabled by mines at every intersection (vertex) and road (edge) in the graph. In 

such a road network, where no route segment is lower risk than any other, the MTC 

algorithm will outperform the other algorithms; Figure 4 confirms that result. On the 

other hand, if the probabilities of being disabled vary across the intersections and 

roads, the relative rankings of the five algorithms may be different. Figure 5 shows a 

series of ten trials, again with a common road network and increasing time limits. In 

the road network used for these trials the MTC had the worst performance and the LD 

algorithm was the best in terms of the performance metric. Figure 5 illustrates that the 

time delay associated with taking alternate routes can be justified if a sufficient 

reduction in the number of disabled trucks results from the detours. 

Figure 6 illustrates that when the shortest path is only slightly riskier than a longer 

path there is a balance between taking the shortest path (minimizing time) and a 

longer patch (minimizing risk). If the time limit is large (toward the right side of the 
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figure) detouring off the shortest path will yield better results, but when the time limit 

is small (toward the left side of figure) the MTC algorithm performs best. 

OH6 - Equal Probability Graph 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time

P
e
rf

o
rm

a
n

c
e
 V

a
lu

e

LD

LPD

MTC

LD-MTC

LPD-MTC

 

Figure 4: Results for a Road Network with Equal Probabilities of Disablement. 

 

Figure 5: Results for a Road Network with Widely Varying Probabilities of Disablement. 
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OH1 - Modified Probability Test Graph
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Figure 6: Results for a Road Network with Slight Varying Probabilities of Disablement. 

After verifying the performance of the five algorithms against various road networks, 

a set of several widely varying personalities were encoded into the automated 

commander. These personality profiles did not correspond to specific persons; there 

were produced by the experimenters to evaluate the model’s ability to increase 

realism and were intended to be representative of typical commander profiles. The 

performance results of the representative personality commanders were then analyzed 

for system sensitivity and realism. 

Figure 7 illustrates the personality profiles used for two of the representative 

commanders (as well as the user interface in the simulation for entering commander 

personalities). Figure 7(a) shows a generally “good” commander, with personality 

traits typical of low anxiety and high knowledge. In contrast, figure 7(b) shows a 

generally “bad” commander, with high anxiety and low knowledge. 

Over multiple trials the “good” commander’s average performance value was 0.15 

and the “bad” commander’s average performance value was 0.08. Even though the 

“good” commander was simply choosing among decisions made by the five routing 

algorithms, that commander’s average performance was better than any one of the 

five algorithms because his/her personality allowed him/her to choose the best 

decision for a situation. For the opposite reason the “bad” commander’s average 

performance was worse than any one of the five algorithms. Figure 8 compares the 

good and bad commanders’ performance values of 0.15 and 0.08 to the performance 

of the five routing algorithms without any personality influence. The “good” 

commander performs significantly better than any of the five algorithms, whereas the 
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“bad” commander performs worse than any of the five algorithms for time 

limits  3000. 

(a) “Good” commander (b) “Bad” commander(a) “Good” commander (b) “Bad” commander
 

Figure 7: Personality Profiles for Representative Good and Bad Commanders. 
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Figure 8: Average “Good” and “Bad” Commander Performance. 

 

Comments on the Results 

Though the representative “good” and “bad” commanders showed good and bad 

performance as expected, some of the results obtained using the other representative 
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personality profiles were more mixed. For example, it was possible to define a 

“panicky” commander that would outperform a “good” commander in some 

situations, an unexpected result. This could be due simply to randomness in the 

simulation, but it is also possible that the representative personality profiles were 

flawed or the method used to connect personality traits to decision-making behavior 

needs improvement. 

The next step is to encode personality traits of human commanders obtained via 

personality tests and use those traits in the automated commander. Eventually, it is 

hoped that the performance of the automated commander and the real commander 

will be statistically equivalent. In order to achieve these results, two issues must be 

addressed. First, a more objective means of providing personality profiles is needed. 

Unfortunately, there are no personality tests that will provide values for the model’s 

eight traits directly. A reliable means of determining the values of a commander’s 

personality traits is needed. Second, the additive linear relationships used to describe 

a commander’s reaction based on personality are imperfect at best. A learning 

algorithm using non-linear methods to determine likely patterns of behavior may be 

needed. 

Conclusions 

The experiments showed that a trait-based personality model could be integrated into 

an automated command and used to influence the decision-making of that 

commander. Different personality profiles were seen to produce different 

performance in the experimental scenario. 

The experiments suggest that using a trait-based personality model of a commander 

could improve the decision-making realism of the commander. It also seems that, if 

reliable personality assessment tools can be developed, the personalities of human 

commanders can be used within an automated commander. The performance of an 

automated commander could then be compared to the human counterpart as a means 

of validation. Looking farther ahead, a personality model may also be applied to the 

task of predicting how a particular military commander might react in a situation and 

how to improve that commander’s performance.  
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