

V. Bontchev & V. Yosifova
vol. 43, no. 2 (2019): 264-282

https://doi.org/10.11610/isij.4320

Published since 1998 ISSN 0861-5160 (print), ISSN 1314-2119 (online)
Research Article

 Corresponding Author: Tel.: +359 87 6355968 Fax: +359 2 9713710;

E-mail: vesselin.bontchev@nlcv.bas.bg

Analysis of the Global Attack Landscape
Using Data from a Telnet Honeypot

Vesselin Bontchev (), Veneta Yosifova

 National Laboratory of Computer Virology,
Bulgarian Academy of Sciences, Sofia, Bulgaria,
https://nlcv.bas.bg

A B S T R A C T :

After the Mirai botnet was discovered in 2016, we decided to set up a honey-
pot for it and see how widespread it really was. In the process we discovered
that many other malicious attackers were using similar attack vectors. This
paper outlines the process we went through to pick the right honeypot and
the supporting infrastructure (backend database, visualization). This article
presents the statistics we have collected from this honeypot, the conclusions
we have drawn from these statistics, as well as the tools we have developed
to share the data.

A R T I C L E I N F O :

RECEIVED: 21 AUG 2019

REVISED: 13 SEP 2019

ONLINE: 22 SEP 2019

K E Y W O R D S :

honeypot, malware, Mirai, botnet, Telnet

 Creative Commons BY-NC 4.0

Introduction

In August 2016, the malware research group MalwareMustDie discovered a
new botnet, infecting various Internet-connected devices (mostly home rout-
ers, surveillance cameras, and DVRs) – the so-called “Internet of Things” (IoT) –
and used for distributed denial-of-service (DDoS) attacks.1 On 20th of Septem-
ber, 2016, this botnet was used in a massive DDoS attack against the site of the
investigative journalist Brian Krebs.2 On September 30, 2016, the source code
of the bot was released on HackForums as open source. Since then, it has been

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 265

used and modified by many attackers, spawning hundreds of different variants,
and has been responsible for many other massive DDoS attacks (e.g., against
the French cloud provider OVH, against the DNS provider Dyn, against the ISPs
of Liberia, and so on).Reference literature sources as needed (see also the sec-
tion on the reference style below).

The bot is spread via TCP port 23 (Telnet) by exploiting weak or default cre-
dentials of various IoT devices. It generates random IP addresses (taking care to
avoid certain IP ranges, like the one belonging to the US Department of Defense)
and tries to connect to port 23 at that address. If the connection is successful
and it sees a login prompt, it attempts to log in, using a table of widely used
username and password pairs that it carries within itself. If the login is success-
ful, the vulnerable IP is reported to the command-and-control (C2) server of the
botnet, which then proceeds to log in, perform some additional checks, upload
a copy of the bot for the CPU architecture found on the vulnerable device, and
execute it. The C2 server also keeps track of the successfully infected devices
and can send them commands to perform some kind of DDoS attack (ten differ-
ent kinds of such attacks are supported) for a specified time and against a spec-
ified target. Antonakakis et al provide detailed description of it and analysis of
the botnet.3

Once the botnet gained notoriety in the press and its source code was made
publicly available, many threat actors started using it, or modified copies of it,
to create their own botnets. We became interested in how widespread the
problem really was. In order to determine this, we decided to set up a honeypot
listening to port 23, emulating a vulnerable device, and monitoring the attempts
to infect it.

First Attempts

It took us several unsuccessful attempts until we found the right honeypot for
our purposes.

Our Requirements

We had several requirements for any eventual honeypot candidate:

1.It had to be free, open source. Our organization is on a government budget
and our finances are rather limited, so we could not afford to buy a com-
mercial product. Furthermore, we almost certainly would have to tinker
with the honeypot, in order to make it produce the kind of results we were
interested in, so source code availability was a highly desired property.

2.It had to be able to capture samples. We wanted not only to record who
was attacking us but also to capture samples of the malware for further
analysis.

3.It had to have some kind of visualization. We wanted to be able to present
our results in easily understandable form. For this, we needed some kind

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 266

of visualization software and we wanted to concentrate our efforts on an-
alyzing the observed data, instead of on writing such a software on our
own.

MTPot

Our first attempt was MTPot 4 – a honeypot created by the security company
Cymmetria and designed to monitor only attacks from the original Mirai bot.
Unfortunately, this honeypot had several flaws that made us eventually give up
on it:

1.It was monitoring only the attack pattern of the original Mirai bot. Since the
source code was released, various miscreants have made “their” version of
the bot by modifying various strings in it – many of which resulted in
changes of the attack patterns and were, therefore, not detected by this
honeypot.

2.Not only this, but it was looking only for the attack pattern of the bot
(whose function is only to detect vulnerable devices; not to infect them). It
wasn’t monitoring the attempts of the C2 server to infect the honeypot.

3.The honeypot used a Telnet Python library (telnetsrv), which is essen-
tially abandonware – buggy, not supported, and not developed. For in-
stance, we discovered that it crashed if the attacker sent a backspace over
Telnet.

The honeypot logs the credentials (username and password) used by the at-
tacking bots – but does not attempt to capture samples of them for analysis.
The credentials used by the original Mirai are well-known, so this did not bring
us any interesting new information, and it was not clear whether any new cap-
tured credentials were from new Mirai variants or from different bots.

Creating Our Own

Our next attempt was to write our own honeypot, initially along the lines of
MTPot, but using a state-of-the-art Python communication library, twisted.
Unfortunately, using this library is somewhat non-trivial and its documentation
is not easy to understand.

Furthermore the Mirai bot uses the Telnet protocol in a somewhat peculiar
way. It expects the Telnet server to provide a specific set of communication op-
tions and fails to connect, if they are not present. This is a design flaw, not an
intentional protection, but it means that the bot is unable to connect to com-
puters running the standard telnetd server, like Linux desktops. Clearly, the
author of the bot had tested it only with the Telnet server provided by the bus-
ybox telnetd command available on IoT devices. However, we did not know
this at the time and were rather frustrated when our Telnet server worked just
fine if tested manually with the telnet client command but the bots wouldn’t
connect to it. So, we had to eventually abandon the idea of creating the honey-
pot ourselves.

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 267

T-Pot

Our next consideration was T-Pot – a system of various honeypots developed
by Deutsche Telecom.5 It has many advantages but also many disadvantages as
well.

Advantages of T-Pot

1.It is very extensive and is actively developed.

2.It is very easy to install. The installation is designed for inexperienced users.
Basically, you need a dedicated machine with 4-12 Gb RAM and 64 Gb free
disk space, you download an ISO image, burn it on a DVD, boot the machine
from this DVD and it proceeds to install everything necessary.

3.It has many honeypots. Besides a Telnet honeypot, it also has many others
– for SSH, SMB, ADB, ElasticSearch, MySQL, HTTP, SIP, MQTT, FTP, UPNP,
RDP, industrial controllers, etc.

4.It works great. It is very well-refined and well-tested, has built-in visualiza-
tion to observe pictures of the gathered data and so on.

5.By using it, one is helping a community. T-Pot is designed to be used by a
distributed system of installations that, by default, forwards the gathered
data to a community that specializes in threat intelligence.

Unfortunately, T-Pot also has some disadvantages, which resulted in our
eventual decision not to use it.

Disadvantages of T-Pot

1.It is rather difficult to tinker with. While T-Pot makes it easy for inexperi-
enced users to install-and-forget it, it is not very easy to modify and recon-
figure its many parts, in order to get what you actually need – if it is some-
thing different from the default.

2.It keeps only 24 hours’ worth of data. At the end of this period all gathered
data is discarded and the various honeypots are reinitialized. While this is
useful to get a picture of what is happening right now, we wanted to keep
long-term logs and other data in order to spot trends and to conduct fur-
ther long-term analysis.

3.It needs a dedicated Linux machine. While we eventually ended up getting
that, we didn’t have one when we started our quest for a honeypot. All we
had was a rather limited virtual machine running on a Windows 10 host,
which itself wasn’t very powerful and couldn’t afford to run a VM with 12
Gb RAM on it.

4.It relies heavily on the ELK (ElasticSearch, LogStash, Kibana) stack. As we
later discovered, for our conditions this was somehow unreliable and bet-
ter-looking alternatives existed.

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 268

The Solution – Cowrie

Eventually, we managed to discover a solution that fit our needs almost per-
fectly. This was Cowrie – a Telnet and SSH honeypot, developed by Michel
Oosterhof.6

The Advantages of Cowrie

Cowrie has many advantages, which suited our needs almost perfectly. In par-
ticular:

1.It is under active development. The author makes improvements and adds
new features all the time. He is very helpful, answers questions quickly, and
was instrumental with getting our instance of the honeypot up and running.

2. It has excellent documentation. While other open-source products often
leave the user digging into the code in order to understand how to use the
product or, at best, have just installation and basic usage instructions that
leave you scratching your head every time you want to modify something or
do something non-standard with them, the documentation of Cowrie is
simply excellent. It explains in details how to install and configure every as-
pect of it and when occasionally something was unclear, the author modified
the documentation to clarify it.

3. It works great. Despite being a relatively complex product, Cowrie works al-
most flawlessly, does not crash, masquerades as a real machine very well (alt-
hough a dedicated human attacker can still detect it), has extensive logging,
captures samples for later analysis, and, of course, works not just for Mirai but
for any attacker that tries to log in via Telnet or SSH.

4.It offers an emulated shell to the attacker. For security reasons, Cowrie
never runs untrusted code. However, it emulates dozens of Linux com-
mands, so that the attacker is led to believe that they are indeed working
on a real Linux machine that they have managed to log into – while every
single step of theirs is logged thoroughly.

5.It can store the logged data into many kinds of databases. This is achieved
via output plugins – a system that is very extensible. Cowrie has a large set
of such plugins – for JSON logs, ElasticSearch, HPFeeds, InfluxDB, Kafka, sys-
log, MongoDb, MySQL, Redis, Slack, Splunk, and others. Some output
plugins can send captured samples for analysis and scanning to Cuckoo
Sandbox or VirusTotal. If necessary, an expert user can write their own out-
put plugin in the unlikely case that they need to log into some kind of data-
base that Cowrie doesn’t support yet.

6.It is not just a Telnet honeypot. It also contains an SSH honeypot, which
benefits from the same overall design (emulated commands, simulated file
system, output plugins, etc.). While we weren’t originally looking for an SSH
honeypot (we started by being interested only by Mirai), after experiment-
ing with the one in Cowrie and seeing the picture of the ongoing attacks
over this protocol, we decided to use this kind of honeypot, too.

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 269

The Problems with Cowrie

However, in the process of setting up and using Cowrie for a while, we discov-
ered that it (or parts of it), too, had its set of problems. None of them turned
out being a showstopper, but some of them caused us to spend considerable
efforts to circumvent them. We’ll share our results here in the hope that they
might help others who decide to use this honeypot.

ElasticSearch

Initially, we configured Cowrie to log all acquired data into an ElasticSearch da-
tabase. This decision was spurred by the fact that this is the configuration used
by the author himself and the documentation about how to set up and how to
configure this part of the honeypot was most extensive. Unfortunately, we lived
to regret this decision.

One minor problem for us was that the data query language of ElasticSearch
is somewhat unusual and we had problems figuring out the exact queries nec-
essary to visualize what we were interested in.

But the biggest problem was that after a power failure, the whole database
became corrupted. It wasn’t just some portion of data that could be discarded
as lost – the whole database simply stopped working. We couldn’t find anything
in it and we couldn’t write new data to it – we were getting various strange
errors all the time. After several unsuccessful attempts to repair the database,
we ended up scrapping it completely and recreating it from the data in the JSON
logs (we wrote a small Python script for extracting it from there and recording
it in ElasticSearch). The process took more than a week, since we had collected
several months’ worth of data.

To our dreadful disappointment, just two days after we finished recreating
the database, we had another power failure, which again resulted in a total cor-
ruption of the database, making it unusable. At this point we decided that the
situation was intolerable.

We consulted a database specialist, who expressed a rather negative opinion
of ElasticSearch and advised us to switch to a robust, commercial database in-
stead. He really meant Oracle, but we could not afford that, so we decided to
go for MySQL instead.

It is perfectly possible that for others, ElasticSearch would work well as a da-
tabase for storing the data logged by the honeypot. For instance, if the database
server is in the cloud, there is no danger of power failures. Furthermore, we
were advised that ElasticSearch should really be used in a cluster, so that a fail-
ure in one of the nodes can be circumvented by the others. Unfortunately, we
could not afford either of these solutions.

Geolocation

We were interested in where the attacks were coming from – not just what IP
addresses they came from. In order to obtain this information, the IP addresses
have to be geolocated.

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 270

Cowrie itself does not do IP geolocation. However, when ElasticSearch is used
to store the gathered data, the documentation explains how to use FileBeat and
LogStash (parts of the ELK stack) to “enrich” the logs with geolocation data for
every recorded IP address. Unfortunately, since we decided not to use the ELK
stack, this approach was off-limits to us.

Our first approach aimed at circumventing this problem tried to perform ge-
olocation from within MySQL. We downloaded the free geolocation databases
from MaxMind,7 converted them into MySQL tables in the database used by
Cowrie, and modified the queries performed by the visualization to also query
the geolocation data of every visualized IP address. Unfortunately, this turned
out being prohibitively slow and we had to give up on that idea.

Or next solution was to modify both Cowrie and the database schema used
by it, in order to record geolocation data obtained in real-time, as every IP ad-
dress was recorded in the database. Basically, our thinking was that as the ELK
stack adds geolocation data to the database in real-time, so should the MySQL
output plugin.

MySQL

There are a lot of attackers on the Internet, attacking randomly selected IP ad-
dresses via the Telnet and SSH protocols. Approximately 2.5 attacks occur every
second, as we shall demonstrate later in this paper. As a result, Cowrie collects
a humongous amount of information. Some tables in the MySQL database
quickly expanded to tens of millions of rows and became tens of gigabytes in
size after just a few months of constant monitoring of these two protocols.
What is worse, the database schema used by Cowrie is not very efficient. For
instance, every time an attacker issues a command, this command is recorded
in its entirety in a table without checking whether it has been seen before. This
flaw results in this particular table expanding very quickly and the MySQL server
starts suffocating after a certain time.

Initially, we used the same MySQL server that is normally used to drive the web
site of our Lab. After a few months of running the honeypot, we noticed that our
site started failing in bizarre ways. It turned out that the MySQL server had begun
spontaneously to stop responding. Initially we weren’t certain what exactly the
problem was and kept restarting it after each failure – until one day it refused to
restart. Investigation showed that the server had become simply unable to handle
the very large and frequently updated database of the honeypot.

In order to address all these problems, we had to make several changes in
Cowrie and in the MySQL database schema used by it. First, as explained in the
previous section, we added geolocation data. Second, we made it store only
unique versions of the commands entered by the attackers. Third, we made the
storing of such commands in the database optional and controlled from an op-
tion in Cowrie’s config file.

Unfortunately, the author refused to merge our modifications with the main
project. His objection was that they modified significantly the database schema,
making it incompatible with a visualization tool named Kippo-Graph.8 This tool

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 271

was designed to visualize the data gathered by Kippo, which was the Telnet
honeypot that Cowrie is based on – and the author had kept compatibility of
the database used by it and its visualization tool. We attempted to contact the
author of Kippo-Graph, in order to ask him to implement support for both da-
tabase schemas – something, which is perfectly possible and even relatively
easy. Unfortunately, it turned out that Kippo-Graph is basically abandonware,
nobody has been developing it for years, and there was nobody available to
implement our request.

Therefore, we were forced to go with our own fork of Cowrie, where all these
changes of ours were implemented.9 Unfortunately, this has the disadvantage
that our version is getting out-of-sync with the original and the latest develop-
ments haven’t been ported to it yet.

Visualization

Since we decided to forego dependence on the ELK stack, and since the Kippo-
Graph visualizer did not satisfy us, we were forced to start looking for a new
data visualization tool. Fortunately, somebody on Twitter suggested us to try
Grafana 10 and we immediately fell in love with it.

Grafana has many advantages over Kibana (the visualizer of the ELK stack).
To begin with, it is much more beautiful. While Kibana can handle only Elas-
ticSearch as a data source, Grafana supports many kinds of data sources via
plugins. It does support ElasticSearch too but, most importantly for us, it sup-
ports MySQL.

So this is what we ended up using.

 Our Final Setup

To summarize, here is the final setup we for our Telnet and SSH honeypot:

• Honeypot: our modified fork of Cowrie

• Backend: MySQL database

• Visualization: Grafana

• Web server: Nginx (needed to run Grafana)

• HTTPS certificate authority for the web server: Let’s Encrypt (provides free
web site certificates)

The visualization of our honeypots can be accessed via the URL

https://pandora.nlcv.bas.bg/grafana

Accessing it requires credentials (username and password). A demo account,
capable of only viewing the data visualization but not of creating new panels or
of otherwise modifying the dashboard can be accessed by using the username
guest and the password guest.

The same site is also available over Tor via the URL

http://nlcv2zqfqzd2qiwr.onion/grafana

This was done mostly as an intellectual exercise (we wanted to learn how to
set up onion sites) but it also has the benefit that the site is hard to block or

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 272

otherwise censor, should some country’s government decide to do so for what-
ever reason.

The next few figures illustrate the various information panels on the dash-
board associated with our Telnet and SSH honeypots. Normally, the dashboard
shows information gathered during the past 24 hours, but this is highly config-
urable. In the next figures we have used data for the whole month of August,
2019.

Fig. 1 shows the main panel of the dashboard associated with Cowrie. It con-
tains a geographical world map, showing where the attacks are coming from.
Each circle represents a country from which IP addresses have attacked the
honeypot. The circle is not at the particular coordinates of the IP addresses but
roughly at the geographical center of the corresponding country. The size of the
circles is proportional to the number of attacks from this country and they are
color-coded.

To the right of the map, there are two tables. The first shows the names of
the countries attacking the honeypot, with the number of attacks coming from
each one of them, sorted in decreasing order of attacks. The other table con-
tains the IP addresses that are most actively attacking the honeypot, again
sorted in reverse order of the number of attacks. Since in the terms of the EU
GDPR rules, an IP address is personally identifiable information, we are anony-
mizing the last octet of each IP address for privacy reasons.

At the bottom of the image, there are several indicators: the total number of
login attempts (successful or not) for the specified period, the number of unique
IP addresses they are coming from, the total number of files, uploaded by the
attackers, the number of unique files, the number of unique URLs from which

Figure 1: The main panel of the Cowrie dashboard.

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 273

they are being fetched, and the local time of the visitor (not necessarily of the
honeypot).

In addition to this main panel, the dashboard contains several secondary pan-
els.

Fig. 2 shows a bar chart of the number of login attempts for every hour of the
specified period. Fig. 3 shows a pie chart, illustrating what percentage of the
attacks come via the Telnet protocol and what – via the SSH protocol. Fig. 4
shows the top five URLs, from which the uploaded files are most often fetched,
sorted by decreasing popularity.

Figure 2: Hourly chart of the number of login attempts.

Figure 3: Relative percentage of attacks per protocol.

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 274

Figure 4: Top five URLs from which the uploaded files are fetched.

Figure 5: IP geolocation details.

Fig. 5 shows the next panel. It contains geolocation information about the 20

IP addresses that have attacked the honeypot the most often, sorted by

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 275

decreasing number of attacks. The geolocation information includes the
country and city where the IP address resides, as well as the organization that
owns this IP address. As on the small panel with IP addresses (Fig. 1), the last
octet of each address is anonymized.

Finally, the last panel (Fig. 6) shows the names of the organizations that own
the IP addresses that are attacking the honeypot the most often, sorted by de-
creasing number of attacks. Almost all of them are either cloud hosting provid-
ers or major Internet service providers, with DigitalOcean, as a rule, being the
source of a disproportionably large number of attacks.

Figure 6: Organizations that own the IP most often attacking addresses.

Additional Data Processing Tools

While collecting and examining all the information gathered by the honeypot is
undoubtedly interesting, we try to be useful to the community by sharing it in
various ways. This section outlines the main ways in which this sharing occurs.

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 276

Monthly Reports

One of us was asked to write monthly reports, summarizing the results seen by
our honeypots during the previous month. Since this is a rather boring and un-
interesting job, we decided to automate it completely. The result was a sophis-
ticated bash script, which can accept various command line options that deter-
mine the contents and the format of the report that is produced. The script an-
alyzes the JSON log files for a period, specified via a command line option (by
default – covering the previous month), creates a human-readable text report,
outlining the results observed by the honeypot during this period, and option-
ally sends it by e-mail to a specified e-mail address. The script is run automati-
cally every month by a cron job and the report is send to the Director of our Lab,
who then sends it to the Bulgarian Defense Institute.

The report includes such information as:

• the total number of attacks;

• the number of IP addresses which they have come from;

• the number of different countries where these IP addresses reside;

• the number of attacks coming from the territory of Bulgaria;

• the number of different attacking IP addresses residing there;

• a list with detailed information about these Bulgarian IP addresses;

• a list of the countries from which the attacks have originated, as well as the
number of attacks originating from each country, sorted by decreasing
number of attacks;

• a complete list of the URLs from which the files uploaded to the honeypot
have been fetched from, together with the number of times they have been
fetched from there, and sorted by decreasing order of popularity;

• a complete list of the distinct attacking IP addresses, with geolocation in-
formation about each one of them.

The Honeypot Information Sharing System

In order to handle requests for information obtained by our honeypot, which
requests are more detailed and more frequent than once per month, one of us
decided to implement a honeypot information sharing system (HISS) as a web
application written in Django. It can be accessed at the following URL:

https://pandora.nlcv.bas.bg/hiss

The application requires login credentials; a demo account is available by us-
ing the username guest and the password nlcv_guest. The demo account has
many restrictions, on order to prevent it from being abused for overloading our
server. In particular, it is limited to showing information only for Bulgaria, only
from the current year, the user is not allowed to change the password, the
shown IP addresses are anonymized, and the attack times are not displayed

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 277

(only the dates are). The latter is done in order to prevent an attacker from fig-
uring out the IP address of our honeypot by correlating the attack times from
our honeypot with a log of the times of his attacks against various IP addresses.

Once the user logs in, they can perform various searches – by country, by city,
by organization, by date range and so on. Regular (non-demo) accounts can se-
lect the country for which they want the data displayed.

Regular accounts also have an API key, which can be used to query HISS and
to obtain the relevant data automatically, using a REST API.

Unfortunately, since we currently to not have a load balancer, the web appli-
cation probably will not be able to handle too many users logging in simul-tane-
ously and issuing too many queries. In fact, it is rather slow even when a single
user is using it. We are currently working on optimizing it. Eventually, and if we
get the necessary funding, we might be able to acquire a load balancer.

HISS is open source and can be found on GitLab.11

Monthly Abuse Reporting

As shown on Fig. 6, DigitalOcean is routinely the largest offender – i.e., attacks
are coming the most often from IP addresses that belong to this company. In
order to help them reduce the abuse of their services, we have implemented
automatic abuse reporting.

Each night, at 02:00, a cron job runs a bash script, which analyzes the JSON
log file for the previous day for any attacks coming from IP addresses that be-
long to DigitalOcean. For every distinct such address, an abuse report is sent by
e-mail to the address that the company has designated for receiving of abuse
reports. The e-mail is formatted in a special way – in the so-called X-ARF for-
mat.12 It contains detailed information about the offending IP address, the time
of the attack, and a log of the first attack as evidence.

As can be seen in Fig. 7, more than 60 such abuse reports are sent on aver-
age every day. The offending IP address is usually (but not always) taken down
within 24 hours. Despite this, DigitalOcean remains the top source of attacking
IPs, by far.

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 278

Figure 7: A month’s worth of abuse reports sent to DigitalOcean.

Some Statistics

In this section we shall present some statistics of the data, collected by our
honeypots over various time periods.

Cowrie has been running for nearly three years and we have collected a
wealth of data from it. A summary of the data collected for the whole year 2018
is presented in Table 1.

Table 1. Summary of the data collected for the 2018.

Login attempts 27,984,024

File uploads 18,302,863

Unique IPs 76,815

Unique files 12,988

Unique URLs 40,130

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 279

The honeypot was attacked nearly once every second. One and the same file
was uploaded averagely 1409 times. This is not only because one and the same
bot attacks from many different sources but also because the honeypot never
actually executes anything uploaded by the attacker. Mirai-like bots display a
string (different for the different variants) when they are started. The uploader
starts the bot and waits for this string to appear. Since, when the “victim” is a
Cowrie honeypot, this never happens, the uploader assumes that some error
has occurred during the upload and proceeds to re-upload (and restart) the bot
hundreds of times.

Next, Table 2 shows the top 10 countries from which most of the attacks orig-
inate.

Table 2. Top 10 countries from which most of the attacks originate.

Country Attacks

United States 9,859,501

Russia 3,000,089

The Netherlands 2,890,711

Italy 2,184,618

Germany 1,677,107

United Kingdom 1,567,544

Ireland 953,838

France 828,919

Romania 549,091

Canada 523,574

The USA is by far the most aggressive “offender” with more than three times

the number of attacks than the next “contender”, Russia. This is because of the
abundance of cloud hosting services (like DigitalOcean) in the USA. Virtual ma-
chines created for free in the clouds of these hosting services are used to host
the uploaders of Mirai-like botnets, each resulting in thousands of attacks
against the honeypot. Please note that since our honeypot does not distinguish
between Mirai bots (which come from infected IoT devices and only check the
victim for vulnerabilities without infecting it) and Mirai uploaders (which receive
reports from the bots and proceed to infect the vulnerable target), we do not
know whether the infected IoT devices show a similar pattern and prevalence.
Still, the conjecture that there are more IoT devices (including vulnerable ones)
in the USA than, say, in Russia seems a plausible one to us.

Finally, Table 3 shows the top 10 organizations that own the most actively
attacking us IP addresses.

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 280

Table 3. Top 10 organizations that own the most actively attacking us IP addresses.

Organization Attacks

DigitalOcean, LLC 10,159,569

FranTech Solutions 2,385,520

Aruba S.p.A. 2,207,162

Global Layer B.V. 1,498,374

Melbikomas UAB 824,015

LLC Baxet 690,718

3W Infra B.V. 603,213

Hostio Solutions B.V. 589,904

Online S.a.s. 566,011

Hostwinds LLC. 492,757

Every single one of them, without exception, is a cloud hosting provider. They

are all suffering from abuse of their services by the botnet herders but Digital-
Ocean is by far the worst hit. We see nearly five times as many attacks coming
from their IP addresses than from the IP addresses of the next con-tender. The
company clearly needs to do something to reduce the level of abuse of their
services.

Future Work

In the future, we plan on expanding our set of honeypots – both in numbers
(although this is highly dependent on whether we succeed in obtaining funding)
and in kinds.

For instance, we have already set up SMB and ADB honeypots and are col-
lecting data from them. We are actively working on setting up a Remote Desk-
top honeypot listening on port 3389, since there is strong evidence that it is a
frequent avenue of attack, with the attackers trying to infect the victim ma-
chines with ransomware. Setting up such a honeypot is not an easy thing to do.
On the one hand, we do not want to expose a real (or virtual) machine to the
Internet via this protocol. Even if we take care to firewall the outgoing connec-
tions and even if we reimage the machine frequently, there is no guar-antee
that the attackers who manage to log in will not use it to attack other machines
on the Internet – and this is a possibility we are not willing to accept. On the
other hand, if we only emulate successful login and play back a pre-recorded
session to the attacker (this is the approach used in T-Pot), a human attacker
will understand instantly that this is a honeypot and not a real machine.

We also plan to set up honeypots for other communication protocols, like
FTP, memcache, MQTT, SIP, TFTP, UPNP (all of these are available in Dionaea,
we just have to turn them on), as well as some protocols which we currently

Analysis of the Global Attack Landscape Using Data from a Telnet Honeypot

 281

cannot attach a honeypot to, because the actual machine running the current
honeypots needs to communicate through the corresponding ports. These in-
clude HTTP, MySQL and others. We also plan on setting up a network printer
honeypot, a router honeypot for catching exploit attempts, and others.

If we manage to get the necessary funding, we plan on setting up a network
of honeypots on various machines in the cloud, preferably residing physically in
different parts of the world, in order to get a better picture of the various kinds
of attacks that are ongoing on the Internet.

Finally, we intend to cooperate with the security, anti-virus, and threat intel-
ligence companies that are active in this field, in order to improve our work and
results.

Conclusion

Our experience shows that finding the right kind of honeypot for one’s needs is
far from a trivial task. In every single case we had to make significant modifica-
tions to the open source tools that are publicly available and the development
effort often took several months.

Observing the results from running this honeypot over a considerable length
of time shows without a doubt that of the covered communication protocols,
Telnet is extensively used for attacks (usually by Mirai variants).

Acknowledgment

The preparation of this paper is supported by the National Scientific Program
“Information and Communication Technologies for a Single Digital Market in
Science, Education and Security (ICT in SES),” financed by the Ministry of Edu-
cation and Science of the Republic of Bulgaria.

References
1 “MMD-0056-2016 - Linux/Mirai, how an old ELF malcode is recycled,” Malware Must

Die, August 31, 2016, http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-
linuxmirai-just.html.

2 Brian Krebs, “KrebsOnSecurity Hit With Record DDoS,” KrebsOnSecurity, September 21,
2016, https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/.

3 Manos Antonakakis, et al., “Understanding the Mirai Botnet,” 26th USENIX Security
Symposium (2017): 1093-1110, https://www.usenix.org/system/files/conference/
usenixsecurity17/sec17-antonakakis.pdf.

4 GitHub - Cymmetria/MTPot, https://github.com/Cymmetria/MTPot.
5 T-Pot 16.10 - Multi-Honeypot Platform Redefined, Deutsche Telekom AG Honeypot

Project, 31 Oct 2016, https://dtag-dev-sec.github.io/mediator/feature/2016/10/31/
t-pot-16.10.html.

6 GitHub - Cowrie SSH/Telnet Honeypot, https://github.com/micheloosterhof/
cowrie.

Bontchev V. & Yosifova V., ISIJ 43, no. 2 (2019): 264-282

 282

7 “GeoLite2 Free Downloadable Databases,” MaxMind, January 2, 2019,
http://geolite.maxmind.com/download/geoip/database/.

8 GitHub - Ikoniaris/Kippo-Graph, https://github.com/ikoniaris/kippo-graph.
9 GitHub - Bontchev/Cowrie, https://github.com/bontchev/cowrie.
10 Grafana - The open platform for beautiful analytics and monitoring,

https://grafana.com/.
11 GitLab - Honeypot information sharing site, https://gitlab.com/venetay/honeypot-

information-sharing-site.
12 GitHub - X-ARF Specification, https://github.com/xarf/xarf-specification.

About the Authors

Dr. Vesselin Bontchev has a M.Sc. degree in Computer Science from the Tech-
nical University of Sofia and a Ph.D. in Methodology of Computer Anti-Virus Re-
search from the University of Hamburg. He has worked as a research fellow at
the Technical University of Sofia, the Institute of Industrial Cybernetics and Ro-
botics at the Bulgarian Academy of Sciences, as a director of the Laboratory of
Computer Virology at the Bulgarian Academy of Sciences, and as a computer
anti-virus researcher at FRISK Software International in Reykjavik. He is cur-
rently an Assistant Professor at the National Laboratory of Computer Virology
at the Bulgarian Academy of Sciences.

Veneta Yosifova holds a Master’s degree in Informatics from the University of
Sofia “St. Kliment Ohridski” and Master’s degree in International Relations from
the Law Faculty of the same University. Currently she is a Ph.D. student in Ma-
chine Learning and Computer Security at the Technical University of Sofia. She
has working experience as a programmer in various software companies and as
security researcher at the National Laboratory of Computer Virology at the Bul-
garian Academy of Sciences.

	Introduction
	First Attempts
	Our Requirements
	MTPot
	Creating Our Own
	T-Pot
	Advantages of T-Pot
	Disadvantages of T-Pot
	The Solution – Cowrie
	The Advantages of Cowrie
	The Problems with Cowrie
	ElasticSearch
	Geolocation
	MySQL
	Visualization
	Our Final Setup
	Additional Data Processing Tools
	Monthly Reports
	The Honeypot Information Sharing System
	Monthly Abuse Reporting

	Some Statistics
	Future Work
	Conclusion
	Acknowledgment
	References

