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THE DESIGN AND EVALUATION OF  

SITUATION ASSESSMENT STRATEGIES 

Andrew BORDEN  

Mind operates on sensations to create information for its own use.  

Franklin, Oyama
1
 

Introduction and Basic Concepts 

The purpose of this section is to establish the framework for the analysis that follows 

and to introduce some of the basic terms and definitions in an informal way. The 

concepts of “Entropy” and “Information” will be introduced here, but defined more 

formally (and quantitatively) later and tools to measure them will be described. 

The core concept in this paper is “Situation Assessment”. “Situation” in the context of 

warfare consists of the composition, readiness, location and status of adversary 

systems and forces. “Assessment” takes place within a “Frame of Discernment”. A 

frame of discernment is a set of distinguishable possibilities, one of which is the 

actual situation. The objective of situation assessment is to make the distribution of 

probabilities on the frame of discernment asymmetrical so that one possible situation 

is determined to be highly probable and the others less probable. Typically, we want 

the high probability to exceed some threshold before we accept it as a successful 

assessment. That is, we begin the process at some level of uncertainty (entropy) and 

we reduce the uncertainty until we have sufficient confidence to make the assessment. 

The reduction of uncertainty is information. For emphasis, the reduction of 

uncertainty is not produced by information, it is information. The “assessment” is 

accomplished by the systematic generation and use of information, usually according 

to some efficient strategy.  

Information can only be produced in the presence of Knowledge. In the absence of 

knowledge, all messages from the environment are noise. Moreover, Knowledge, in 

the form of a data base for example, is not enough. There must be a procedure for 

using the knowledge to reduce uncertainty when Messages from the environment are 

received.  
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It could be that the information-producer has the option to select types of messages 

from the environment. Each type of message could make a different information 

contribution, depending on the data base, the current uncertainty and how noisy the 

message communications channel is. Moreover, each type of message could have a 

different cost, perhaps time. It is clearly necessary then, to develop a strategy for 

selecting messages to reduce the entropy most efficiently.  

If all this seems abstract, let the reader take heart. We will illustrate these ideas first 

with a familiar example, then with a generalization of the example complete with 

mathematical formulas and figures. 

Example of the Basic Concepts 

The example we will use is that of a radar parametric data base being developed and 

used to generate a strategy to identify radars quickly and with high confidence. The 

output of this process would be the Radar Classification Algorithm (RCA) in a Radar 

Warning Receiver (RWR). This is a straightforward illustration of situation 

assessment in which an accurate and relatively complete data base exists.  

The RCA selects parameters to be measured depending on what is already known, 

how much information the new parameter will contribute and how much the para-

meter measurement will cost. The idea is to reduce entropy as quickly as possible 

until the probability of one radar classification exceeds the specified threshold. Then, 

the aircrew is notified so that appropriate defensive actions can be initiated. 

The procedure for iteratively selecting parameters is the RCA strategy. Unfortunately, 

finding the optimal strategy is a Non-deterministic, Polynomial Time (Complete) 

(NP-Complete) problem. This means that we will almost always have to settle for a 

less-than-optimal solution, but it must be demonstrably good.
2
 (More about the 

“demonstrable” part later). The impact of NP-completeness is that, to ensure good 

run-time performance, very hard work is required during the algorithm design phase.
3
 

How we accomplish this very hard work quickly and reliably is the key point in this 

paper. 

Roadmap to the Analysis 

The remainder of this paper is in five parts, followed by conclusions. The first part 

contains a brief introduction to the mathematics of information, based on Shannon’s 

classic work from the 1940’s.
4
 The second part shows how knowledge is obtained and 

used to construct a data base. The third part contains an explanation of how the data 

base becomes an active memory which is the background for entropy reduction 

(information production). The fourth part contains an explanation of how the active 

memory and other factors support the development of an efficient situation 

assessment strategy. Finally, a tool for designing and/or evaluating strategies is 
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described and its use is illustrated with a quantitative example. The tool can be used 

to measure the utility of attack and protect measures in Information Warfare.
5
 The 

RCA example will be the unifying thread in this analysis.  

We will follow Shannon in calling data from the environment, for example parametric 

measurements, “messages,” not “information.”  

Fundamental Definitions in the Theory of Information  

Entropy and Information 

Definition 1:  Information is the degree to which uncertainty (entropy) is 

reduced. 

We define "information" in terms of "uncertainty" because, when performing any type 

of situation assessment, we begin with relative uncertainty and attempt to replace it with 

certainty. Therefore, uncertainty is the starting point for all information theoretic 

definitions. Another name for uncertainty is "entropy." We can compute entropy 

whenever we have a probability distribution. Given a probability distribution {P(i)}, i = 

1,2,3,...,N, where each P(i) > 0, the entropy is
6
: 

 H = - i P(i) * Log2 P(i) 

Entropy is measured in bits. For example, if “Land” and “Sea” were equally probable, 

Paul Revere’s initial entropy was exactly one bit. The signal from the Old North Church 

(one lantern if by land, two if by sea) contained exactly one bit of information, reducing 

the entropy to zero. For another example, if there are four, equally probable possibilities 

(with probability 0.25), our initial entropy is: 

 H = - (0.25*(-2) + 0.25*(-2) + 0.25*(-2) + 0.25*(-2)) = 2 bits. 

 (because Log2 0.25 = -2)   

If in any given situation, there is a current set of distinguishable possibilities and a 

current assessment of probabilities, the entropy is computed by the equation. As you 

might expect, entropy is low when one of the possibilities has a very high probability 

and all the others have low probabilities. The converse is true. Entropy is high when all 

possibilities are almost equally probable. Our objective in situation assessment is to 

reduce entropy, i.e. to sharpen the probability distribution so that we can select one of 

the possibilities with a specified level of confidence. 

Mutual Information 

A message from an environment is the result of a measurement of one or more 

parameters of something in the environment. The "information" contained in a message 

is the reduction in entropy produced by the message. So, if we receive a new message 

from the environment, we may revise our assessment of the current probabilities and re-

compute the entropy. The difference between the new and old entropies is the 

information (in bits) contributed by the message (Definition 1). 
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If there are several parameters which could be measured, we want to choose the one 

which is likely to provide the most information (entropy reduction). The expected 

amount of information to be derived from a new parameter measurement is called the 

"mutual information" between the new information source and our current knowledge. 

La France provides a formula to compute mutual information.
7
 Mutual information is 

measured in bits. 

Definition 2: Mutual information between a new message source and our 

current knowledge is the expected value of the information (entropy reduction) 

to be obtained by evaluating a message from the new source. 

For example, suppose that, as the result of making a parametric observation of a 

situation, we have new probabilities for the situation in the above example: 0.125, 

0.125, 0.25, 0.5. The new entropy is: 

 H = -(0.125*(-3) + 0.125*(-3) + 0.25*(-2) + 0.5*(-1)) = 1.75 bits.  

So, this parameter measurement has reduced our entropy by 0.25 bits. The weighted 

average entropy reduction over all possible values of the new parameter is the mutual 

information between the new parameter and what we already know. In other words, the 

mutual information of a candidate information source is the amount to which we can 

expect uncertainty (entropy) to be reduced by the source. (Definition 2) 

Information Payoff 

If each candidate data source has a cost associated with it, we would, of course, compute 

the ratio of mutual information to cost. If the cost is time, we would come up with a rate 

of information production from the new source in bits per second. 

Definition 3: The information payoff from a candidate message source is the 

ratio of mutual information to the cost of using the candidate source. 

Suppose we have a number of intelligence resources available to assess a situation. If the 

knowledge base includes statistical descriptions of each possible situation, we can 

compute the expected value of the information payoff from each resource. In this case, 

the cost might not be only in time. It might be in lack of covertness, fuel, risk or some 

other commodity. We would select the intelligence resources which have the highest 

information payoffs, based on what we already know. This is done iteratively until the 

classification of the situation is successful or until all the intelligence resources have 

been used without success. 

Knowledge Acquisition and Data Base Development 

Figure 1 illustrates how passive knowledge (a data base) is developed, then becomes 

an active knowledge base or associative memory. Without some supervision or  
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Figure 1:  Knowledge Development 

 

independent verification of the meaning of messages (parametric measurements), 

little real knowledge develops. It is possible to do some clustering within the 

parameter measurement space and to hypothesize that certain values of different 

parameters appear to occur together and may be related. Visualize the Lieutenant in 

Electronic Warfare School looking at his equipment for the first time. He or she sees 

a plethora of messages which seem to be very noisy indeed. After a few hours, aural 

pitch, location on the CRT and scan frequency may assemble themselves into rough 

patterns, but real knowledge remains very sparse until certain parameter clusters are 

related to objects (Radars) that actually exist in the real world.  

With independent verification, rough clusters can be refined and related to 

distinguishable objects (radars) in the frame of discernment. Now, we have the 

beginnings of a data base! 

Two things are now needed to develop a relatively complete, usable data base. The 

first is a dedicated, purposeful collection effort, guided at every step by independent 

verification. The second is the design of a sound data base format, based on the 

intended use of the information. If the intended use is to facilitate smart, structured 

queries and sorts, the best format is highly relational, with every table having perhaps 

only two fields - a key and a single parameter. It is well-known that this dedicated 

collection effort exists and that it continually supports and updates the resulting data 

base. 
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Note that, in Figure 1, there is overlap between the clusters of parameter 

measurements. For one or more reasons, it is impossible to distinguish absolutely 

between objects in the frame of discernment by using the data base. The probable 

reason is that not enough parameters are available to make a classification with zero 

uncertainty. This is almost certainly the case when only one parameter measurement 

is available to evaluate. The overlap can be regarded as noise in the channel through 

which the parameter was sent. Thinking about ambiguity in terms of noise is natural 

in the context of Shannon’s information theory. 

If we have one or more parameter measurements for an object (radar), how do we use 

the data base to reduce entropy? The answer is that we use some sort of “Nearness” 

function to identify the best candidate classification. There are a number of ways to 

specify nearness, but the one that is consistent with Shannon’s mathematics is the 

Bayesian one. That is, we compute the conditional probabilities for each candidate 

classification, given the parameter that we have measured. The candidate with the 

highest conditional probability is the nearest, so is the best guess based on what we 

currently know. When we get near enough to one radar (when the probability gets 

high enough), we commit and take appropriate action. 

Development of an Active Memory 

In Figure 2, the parameter messages coming from the environment are shown as 

dashed lines to indicate that one or more, but not all, of the parameters may be 

selected. We are using our nearness function only with the tables in the data base 

which are relevant to the selected parameters. 

The data base with the nearness function is an active, associative memory. An 

associative memory does precisely what we have described. It takes a partial 

description of an object and finds the nearest classification - the one having the 

highest probability of being the correct one. Recall that, as the probability distribution 

sharpens (as one object gets very near to our parameters), the entropy becomes less, 

so information is being produced.  

The Figure shows that parameter measurements are selected iteratively according to 

the situation assessment strategy until we are near enough to some known radar in the 

environment to make the classification. 

 

Designing a Strategy for Situation Assessment  

In an RWR, it is necessary to deinterleave pulse trains in order to isolate a radar 

signal which requires classification. Since the average Pulse Recurrence Interval 

(PRI) is used to accomplish deinterleaving, this parameter is automatically available  
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Figure 2: Applying the Situation Assessment Strategy 

 

without additional cost in time. Therefore, in designing a good RCA, the first step is 

to compute the conditional probabilities for candidate radars, given PRI. If PRI has 

given us enough information (reduced entropy enough), we make the classification 

decision based on the nearest match (highest probability). If not, we have the very 

interesting question regarding which parameter to measure next. This decision has the 

very practical and important result of ensuring that valuable resources are used in the 

most efficient way.  

The next section contains a description of a tool (the situation assessment evaluation 

tool) which explains how efficient parameter selection can be based on Bayesian 

probabilities and Shannon’s information theory. The original motivation for 

developing this tool was precisely to enable the design of a good RCA for use in 

RWR’s. It is generally usable in any situation assessment task however. 

 

The Situation Assessment Tool (SAET) 

Description of the Tool 

Using the principles described above, we have developed a program which will build a 

nearly optimal situation assessment strategy, given a statistical description of possible 

outcomes, confidence requirements and the capabilities of the assessment system to 

perform parameter measurements..  

The tool computes the initial entropy based on an a priori assessment of the 

probabilities of the objects in the frame of discernment and selects the parameter 
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measurement with the best information payoff. (In the case of the RCA, it is PRI). For 

each possible PRI value, the parameter measurement with the next highest payoff is 

selected. The process continues recursively until a decision tree is complete with each 

node labelled with a “Classification” (radar type), “Failure” (to reach the specified 

confidence level), or “Unknown”, (meaning that the combination of parameters does not 

match anything in the data base). At each node in the decision tree, statistics are 

available on the current conditional probabilities, the current entropy, current cost and 

other statistics which permit evaluation of the Classification strategy. 

At each node in the decision tree, the list of conditional probabilities serves as a 

nearness function. Of course, the determination of conditional probabilities and 

entropies is very computation intensive. This is a mixed blessing. When the strategy is 

completed, we know everything about its throughput, entropy reduction and expected 

response time. We can assign it a report card and/or edit it to make any needed 

tradeoffs. For example, we might be willing to accept a slightly lower confidence level 

to replace a “Failure” result with a Classification. The maintenance of performance 

statistics is the “demonstrable” part of “demonstrably good” as discussed previously in 

the second section. 

Figure 3 is a flow chart for the program. There is also a turnkey Data Base - to - 

Knowledge Base Module which discretizes parameter measurements into windows and 

computes all the probabilities which are needed to start the program. The user also has 

the option to input a partial decision tree and let the program complete the design work.  

This tool can be used in IW evaluation as follows: 

Using best a priori information, a situation assessment strategy is developed for a given 

Situation. Statistics on efficiency (bits of information and time required) are recorded. 

An information attack and/or an information protect measure is applied. A revised 

strategy is developed and efficiency is measured again. The difference in efficiency is a 

measure of how the difficulty of situation assessment has been changed by the 

information attack/protect measure.  

Numerical Example 

Consider the situation in which an adversary is designing an RCA. If he knows the a 

priori distribution of radars in our Air Defense System, his initial uncertainty is much 

less and the work he has to do to design a good classification algorithm is much easier. 

For the purposes of this illustration, we will assume that the adversary is using a "good" 

method to design his algorithm - like our design program mentioned above. 
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We are postulating an environment in which there are five types of radars and five 

possible parameter measurements, each requiring a different amount of time to 

accomplish. The objective of the classification is to use sequences of measurements 

which get us to 90 % confidence as quickly as possible. The strategy for utilizing 

parameter measurements is embedded in a decision tree. 

Table 1 shows the real world probability of occurrence of radars in the environment. If 

the adversary does not know the real-world probabilities, he is forced to use a default 

assumption that all the radars are equally probable. 

RADAR TYPE A B C D E 

REAL-WORLD 

PROBABILITIES OF OCCURRENCE 

0.1 0.1 0.1 0.2 0.5 

DEFAULT (ASSUMED) PROBABILI-TIES 
0.2 0.2 0.2 0.2 0.2 

 

Table 1 : Real World and default probabilities of radars  
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Table 2: Entropy change (information margin) and time required for classification. 

(90 % confidence required). 

  

We now design classification algorithms using the two different assumptions about the a 

priori probability of occurrence of radars. Table 4 shows how the resulting classification 

algorithms perform. The initial entropy is much greater if the a priori probabilities are 

unknown. The result is that the information margin (the amount of work that must be 

done to make a classification) is much greater (2.00 versus 1.61 bits). The cost in 

seconds is also greater. 

The conclusion to be drawn from this example is that the work required in doing this 

situation assessment (information margin of the friendly situation as assessed by the 

adversary) can be increased by 25 % if we successfully apply certain information 

protect measures, i.e. operational security (OPSEC).
8
  

For each of the situations in Table 2 (known and unknown a priori probabilities), the 

program took about a minute to design a classification algorithm from scratch, provide 

performance numbers for every possible combination of parameters and compute 

expected values for elapsed time and entropy reduction. The computation was done 

using a Pentium 100. 

Conclusions 

 Information is created or produced when parametric messages from the 

environment are processed by an active memory. 

 The active (associative) memory consists of a data base and an algorithm which 

computes a “nearness” function. 

 The nearness computation reduces uncertainty and produces information 

 PROBABILITIES 

KNOWN 

PROBABILITIES 

ASSUMED 

INITIAL ENTROPY (bits) 1.96 2.32 

FINAL ENTROPY (bits) 0.35 0.32 

INFORMATION MARGIN (bits) 

(INITIAL - FINAL) 

1.61 2.00 

MEAN TIME FOR 

CLASSIFICATION (sec) 

0.87 1.14 
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 Developing a good situation assessment strategy means selecting parameters 

whose values will produce the most information (reduce uncertainty) at the least 

cost. This process can be automated. 

The situation assessment design and evaluation tool can be used to quantify the utility 

of certain attack and protect measures in Information Warfare. 
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